首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of the C57A and V13G molecular variants of Allochromatium vinosum 2[4Fe–4S] ferredoxin (AlvinFd) and that of the homologous ferredoxin from Escherichia coli (EcFd) have been determined at 1.05-, 1.48-, and 1.65-Å resolution, respectively. The present structures combined with cyclic voltammetry studies establish clear effects of the degree of exposure of the cluster with the lowest reduction potential (cluster I) towards less negative reduction potentials (E°). This is better illustrated by V13G AlvinFd (high exposure, E° = ?594 mV) and EcFd (low exposure, E° = ?675 mV). In C57A AlvinFd, the movement of the protein backbone, as a result of replacing the noncoordinating Cys57 by Ala, leads to a +50-mV upshift of the potential of the nearby cluster I, by removal of polar interactions involving the thiolate group and adjustment of the hydrogen-bond network involving the cluster atoms. In addition, the present structures and other previously reported accurate structures of this family of ferredoxins indicate that polar interactions of side chains and water molecules with cluster II sulfur atoms, which are absent in the environment of cluster I, are correlated to the approximately 180–250 mV difference between the reduction potentials of clusters I and II. These findings provide insight into the significant effects of subtle structural differences of the protein and solvent environment around the clusters of [4Fe–4S] ferredoxins on their electrochemical properties.  相似文献   

2.
The MoFe protein of nitrogenase is an α2β2 tetramer that contains two each of two different types of metal centers, the FeMo-cofactor and the P-clusters. The function of the P-clusters is believed to be to accept electrons from the Fe protein of nitrogenase and to donate them to the FeMo-cofactor. We have studied the P-clusters of Azotobacter vinelandii nitrogenase in both the PN and POX states utilizing Fe K-edge X-ray absorption spectroscopy. Since the MoFe holoprotein contains the seven iron FeMo-cofactor centers in addition to P-clusters, we have utilized a FeMo-cofactor-deficient MoFe protein synthesized by the Δnif H strain DJ54. That MoFe protein is an α2β2 tetramer that contains P-clusters by the criteria of metal analysis, CD spectroscopy, cluster extrusion, and electrochemical reduction of the POX state. Several important results have emerged from our XAS studies. The first shell Fe-S coordination shows the same average Fe-S distance (2.26?Å) in both states. The second coordination shells could only be well fit using two different Fe-Fe contributions. In both states, short Fe-Fe components with distances of 2.57?Å and 2.42?Å for the PN and POX states, respectively, were required to complement longer 2.75?Å and 2.70?Å distances. Understanding of the P-cluster structure is essential if we are to make advances in understanding the role of the P-clusters and their participation in electron transfer through the nitrogenase system.  相似文献   

3.
The three-dimensional structure of the native "putative prismane" protein from Desulfovibrio vulgaris (Hildenborough) has been solved by X-ray crystallography to a resolution of 1.72?Å. The molecule does not contain a [6Fe-6S] prismane cluster, but rather two 4Fe clusters some 12?Å apart and situated close to the interfaces formed by the three domains of the protein. Cluster 1 is a conventional [4Fe-4S] cubane bound, however, near the N-terminus by an unusual, sequential arrangement of four cysteine residues (Cys 3, 6, 15, 21). Cluster 2 is a novel 4Fe structure with two μ2-sulfido bridges, two μ2-oxo bridges, and a partially occupied, unidentified μ2 bridge X. The protein ligands of cluster 2 are widely scattered through the second half of the sequence and include three cysteine residues (Cys 312, 434, 459), one persulfido-cysteine (Cys 406), two glutamates (Glu 268, 494), and one histidine (His 244). With this unusual mixture of bridging and external type of ligands, cluster 2 is named the "hybrid" cluster, and its asymmetric, open structure suggests that it could be the site of a catalytic activity. X-ray absorption spectroscopy at the Fe K-edge is readily interpretable in terms of the crystallographic model when allowance is made for volume contraction at 10?K; no Fe··Fe distances beyond 3.1?Å could be identified. EPR, Mössbauer and MCD spectroscopy have been used to define the oxidation states and the magnetism of the clusters in relation to the crystallographic structure. Reduced cluster 1 is a [4Fe-4S]1+ cubane with S?=?3/2; it is the first biological example of a "spin-admixed" iron-sulfur cluster. The hybrid cluster 2 has four oxidation states from (formally) all FeIII to three FeII plus one FeIII. The four iron ions are exchange coupled resulting in the system spins S?=?0, 9/2, 0 (and 4), 1/2, respectively, for the four redox states. Resonance Raman spectroscopy suggests that the bridging ligand X which could not be identified unambiguously in the crystal structure is a solvent-exchangeable oxygen.  相似文献   

4.
Chemical rescue of site-modified amino acids using externally supplied organic molecules represents a powerful method to investigate structure-function relationships in proteins. Here we provide definitive evidence that aryl and alkyl thiolates, reagents typically used for in vitro iron-sulfur cluster reconstitutions, serve as rescue ligands to a site-specifically modified [4Fe-4S]1+,2+ cluster in PsaC, a bacterial dicluster ferredoxin-like subunit of Photosystem I. PsaC binds two low-potential [4Fe-4S]1+,2+ clusters termed FA and FB. In the C13G/C33S variant of PsaC, glycine has replaced cysteine at position 13 creating a protein that is missing one of the ligating amino acids to iron-sulfur cluster FB. Using a variety of analytical techniques, including non-heme iron and acid-labile sulfur assays, and EPR, resonance Raman, and Mössbauer spectroscopies, we showed that the C13G/C33S variant of PsaC binds two [4Fe-4S]1+,2+ clusters, despite the absence of one of the biological ligands. 19F NMR spectroscopy indicated that the external thiolate replaces cysteine 13 as a substitute ligand to the FB cluster. The finding that site-modified [4Fe-4S]1+,2+ clusters can be chemically rescued with external thiolates opens new opportunities for modulating their properties in proteins. In particular, it provides a mechanism to attach an additional electron transfer cofactor to the protein via a bound, external ligand.  相似文献   

5.
FdVI from Rhodobacter capsulatus is structurally related to a group of [2Fe–2S] ferredoxins involved in iron–sulfur cluster biosynthesis. Comparative genomics suggested that FdVI and orthologs found in α-Proteobacteria are involved in this process. Here, the crystal structure of FdVI has been determined for both the oxidized and the reduced protein. The [2Fe–2S] cluster lies 6 Å below the protein surface in a hydrophobic pocket without access to the solvent. This particular cluster environment might explain why the FdVI midpoint redox potential (?306 mV at pH 8.0) did not show temperature or ionic strength dependence. Besides the four cysteines that bind the cluster, FdVI features an extra cysteine which is located close to the S1 atom of the cluster and is oriented in a position such that its thiol group points towards the solvent. Upon reduction, the general fold of the polypeptide chain was almost unchanged. The [2Fe–2S] cluster underwent a conformational change from a planar to a distorted lozenge. In the vicinity of the cluster, the side chain of Met24 was rotated by 180°, bringing its S atom within hydrogen-bonding distance of the S2 atom of the cluster. The reduced molecule also featured a higher content of bound water molecules, and more extensive hydrogen-bonding networks compared with the oxidized molecule. The unique conformational changes observed in FdVI upon reduction are discussed in the light of structural studies performed on related ferredoxins.  相似文献   

6.
Danyal K  Dean DR  Hoffman BM  Seefeldt LC 《Biochemistry》2011,50(43):9255-9263
The reduction of substrates catalyzed by nitrogenase utilizes an electron transfer (ET) chain comprised of three metalloclusters distributed between the two component proteins, designated as the Fe protein and the MoFe protein. The flow of electrons through these three metalloclusters involves ET from the [4Fe-4S] cluster located within the Fe protein to an [8Fe-7S] cluster, called the P cluster, located within the MoFe protein and ET from the P cluster to the active site [7Fe-9S-X-Mo-homocitrate] cluster called FeMo-cofactor, also located within the MoFe protein. The order of these two electron transfer events, the relevant oxidation states of the P-cluster, and the role(s) of ATP, which is obligatory for ET, remain unknown. In the present work, the electron transfer process was examined by stopped-flow spectrophotometry using the wild-type MoFe protein and two variant MoFe proteins, one having the β-188(Ser) residue substituted by cysteine and the other having the β-153(Cys) residue deleted. The data support a "deficit-spending" model of electron transfer where the first event (rate constant 168 s(-1)) is ET from the P cluster to FeMo-cofactor and the second, "backfill", event is fast ET (rate constant >1700 s(-1)) from the Fe protein [4Fe-4S] cluster to the oxidized P cluster. Changes in osmotic pressure reveal that the first electron transfer is conformationally gated, whereas the second is not. The data for the β-153(Cys) deletion MoFe protein variant provide an argument against an alternative two-step "hopping" ET model that reverses the two ET steps, with the Fe protein first transferring an electron to the P cluster, which in turn transfers an electron to FeMo-cofactor. The roles for ATP binding and hydrolysis in controlling the ET reactions were examined using βγ-methylene-ATP as a prehydrolysis ATP analogue and ADP + AlF(4)(-) as a posthydrolysis analogue (a mimic of ADP + P(i)).  相似文献   

7.
In type E succinate:quinone reductase (SQR), subunit SdhE (formerly SdhC) is thought to function as monotopic membrane anchor of the enzyme. SdhE contains two copies of a cysteine-rich sequence motif (CX n CCGX m CXXC), designated as the CCG domain in the Pfam database and conserved in many proteins. On the basis of the spectroscopic characterization of heterologously produced SdhE from Sulfolobus tokodaii, the protein was proposed in a previous study to contain a labile [2Fe–2S] cluster ligated by cysteine residues of the CCG domains. Using UV/vis, electron paramagnetic resonance (EPR), 57Fe electron–nuclear double resonance (ENDOR) and Mössbauer spectroscopies, we show that after an in vitro cluster reconstitution, SdhE from S. solfataricus P2 contains a [4Fe–4S] cluster in reduced (2+) and oxidized (3+) states. The reduced form of the [4Fe–4S]2+ cluster is diamagnetic. The individual iron sites of the reduced cluster are noticeably heterogeneous and show partial valence localization, which is particularly strong for one unique ferrous site. In contrast, the paramagnetic form of the cluster exhibits a characteristic rhombic EPR signal with g zyx  = 2.015, 2.008, and 1.947. This EPR signal is reminiscent of a signal observed previously in intact SQR from S. tokodaii with g zyx  = 2.016, 2.00, and 1.957. In addition, zinc K-edge X-ray absorption spectroscopy indicated the presence of an isolated zinc site with an S3(O/N)1 coordination in reconstituted SdhE. Since cysteine residues in SdhE are restricted to the two CCG domains, we conclude that these domains provide the ligands to both the iron–sulfur cluster and the zinc site.  相似文献   

8.
The key step in the fermentation of glutamate by Acidaminococcus fermentans is a reversible syn-elimination of water from (R)-2-hydroxyglutaryl-CoA to (E)-glutaconyl-CoA catalyzed by 2-hydroxyglutaryl-CoA dehydratase, a two-component enzyme system. The actual dehydration is mediated by component D, which contains 1.0 [4Fe-4S]2+ cluster, 1.0 reduced riboflavin-5′-phosphate and about 0.1 molybdenum (VI) per heterodimer. The enzyme has to be activated by the extremely oxygen-sensitive [4Fe-4S]1+/2+-cluster-containing homodimeric component A, which generates Mo(V) by an ATP/Mg2+-induced one-electron transfer. Previous experiments established that the hydroquinone state of a flavodoxin (m=14.6 kDa) isolated from A. fermentans served as one-electron donor of component A, whereby the blue semiquinone is formed. Here we describe the isolation and characterization of an alternative electron donor from the same organism, a two [4Fe-4S]1+/2+-cluster-containing ferredoxin (m=5.6 kDa) closely related to that from Clostridium acidiurici. The protein was purified to homogeneity and almost completely sequenced; the magnetically interacting [4Fe-4S] clusters were characterized by EPR and Mössbauer spectroscopy. The redox potentials of the ferredoxin were determined as ?405 mV and ?340 mV. Growth experiments with A. fermentans in the presence of different iron concentrations in the medium (7–45 μM) showed that flavodoxin is the dominant electron donor protein under iron-limiting conditions. Its concentration continuously decreased from 3.5 μmol/g protein at 7 μM Fe to 0.02 μmol/g at 45 μM Fe. In contrast, the concentration of ferredoxin increased stepwise from about 0.2 μmol/g at 7–13 μM Fe to 1.1±0.1 μmol/g at 17–45 μM Fe.  相似文献   

9.
In a forward genetic screen for interaction with mitochondrial iron carrier proteins in Saccharomyces cerevisiae, a hypomorphic mutation of the essential DRE2 gene was found to confer lethality when combined with Δmrs3 and Δmrs4. The dre2 mutant or Dre2-depleted cells were deficient in cytosolic Fe/S cluster protein activities while maintaining mitochondrial Fe/S clusters. The Dre2 amino acid sequence was evolutionarily conserved, and cysteine motifs (CX2CXC and twin CX2C) in human and yeast proteins were perfectly aligned. The human Dre2 homolog (implicated in blocking apoptosis and called CIAPIN1 or anamorsin) was able to complement the nonviability of a Δdre2 deletion strain. The Dre2 protein with triple hemagglutinin tag was located in the cytoplasm and in the mitochondrial intermembrane space. Yeast Dre2 overexpressed and purified from bacteria was brown and exhibited signature absorption and electron paramagnetic resonance spectra, indicating the presence of both [2Fe-2S] and [4Fe-4S] clusters. Thus, Dre2 is an essential conserved Fe/S cluster protein implicated in extramitochondrial Fe/S cluster assembly, similar to other components of the so-called CIA (cytoplasmic Fe/S cluster assembly) pathway although partially localized to the mitochondrial intermembrane space.  相似文献   

10.
The catalase from Proteus mirabilis peroxide-resistant bacteria is one of the most efficient heme-containing catalases. It forms a relatively stable compound II. We were able to prepare samples of compound II from P. mirabilis catalase enriched in 57Fe and to study them by spectroscopic methods. Two different forms of compound II, namely, low-pH compound II (LpH II) and high-pH compound II (HpH II), have been characterized by Mössbauer, extended X-ray absorption fine structure (EXAFS) and UV-vis absorption spectroscopies. The proportions of the two forms are pH-dependent and the pH conversion between HpH II and LpH II is irreversible. Considering (1) the Mössbauer parameters evaluated for four related models by density functional theory methods, (2) the existence of two different Fe–Oferryl bond lengths (1.80 and 1.66 Å) compatible with our EXAFS data and (3) the pH dependence of the α band to β band intensity ratio in the absorption spectra, we attribute the LpH II compound to a protonated ferryl FeIV–OH complex (Fe–O approximately 1.80 Å), whereas the HpH II compound corresponds to the classic ferryl FeIV=O complex (Fe=O approximately 1.66 Å). The large quadrupole splitting value of LpH II (measured 2.29 mm s?1 vs. computed 2.15 mm s?1) compared with that of HpH II (measured 1.47 mm s?1 vs. computed 1.46 mm s?1) reflects the protonation of the ferryl group. The relevancy and involvement of such (FeIV=O/FeIV–OH) species in the reactivity of catalase, peroxidase and chloroperoxidase are discussed.  相似文献   

11.
The key enzyme of the fermentation of glutamate by Acidaminococcus fermentans, 2-hydroxyglutarylcoenzyme A dehydratase, catalyzes the reversible syn-elimination of water from (R)-2-hydroxyglutaryl-coenzyme A, resulting in (E)-glutaconylcoenzyme A. The dehydratase system consists of two oxygen-sensitive protein components, the activator (HgdC) and the actual dehydratase (HgdAB). Previous biochemical and spectroscopic studies revealed that the reduced [4Fe–4S]+ cluster containing activator transfers one electron to the dehydratase driven by ATP hydrolysis, which activates the enzyme. With a tenfold excess of titanium(III) citrate at pH 8.0 the activator can be further reduced, yielding about 50% of a superreduced [4Fe–4S]0 cluster in the all-ferrous state. This is inferred from the appearance of a new Mössbauer spectrum with parameters δ = 0.65 mm/s and ΔE Q = 1.51–2.19 mm/s at 140 K, which are typical of Fe(II)S4 sites. Parallel-mode electron paramagnetic resonance (EPR) spectroscopy performed at temperatures between 3 and 20 K showed two sharp signals at g = 16 and 12, indicating an integer-spin system. The X-band EPR spectra and magnetic Mössbauer spectra could be consistently simulated by adopting a total spin S t = 4 for the all-ferrous cluster with weak zero-field splitting parameters D = ?0.66 cm?1 and E/D = 0.17. The superreduced cluster has apparent spectroscopic similarities with the corresponding [4Fe–4S]0 cluster described for the nitrogenase Fe-protein, but in detail their properties differ. While the all-ferrous Fe-protein is capable of transferring electrons to the MoFe-protein for dinitrogen reduction, a similar physiological role is elusive for the superreduced activator. This finding supports our model that only one-electron transfer steps are involved in dehydratase catalysis. Nevertheless we discuss a common basic mechanism of the two diverse systems, which are so far the only described examples of the all-ferrous [4Fe–4S]0 cluster found in biology.  相似文献   

12.
Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+–activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5?(±0.1)?Å. In the X-ray absorption spectrum of Mn2+–activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k≤12?Å–1 by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15?Å, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5?Å is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+–activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.  相似文献   

13.
Site-directed mutagenesis and gene-replacement techniques were used to substitute alanine for the MoFe protein α- and β-subunit phenylalanine-125 residues both separately and in combination. These residues are located on the surface of the MoFe protein near the pseudosymmetric axis of symmetry between the α- and β-subunits. Altered MoFe proteins that contain an alanine substitution at only one of the respective positions exhibit proton reduction activities of about 25–50% when compared to that of the wild-type protein. The lower level of proton reduction also corresponds with decreases in the rates of MgATP hydrolysis. The MoFe protein which contains alanine substitutions in both the α- and β- subunits did not exhibit any proton reduction activity or MgATP hydrolysis. Stopped flow spectrophotometry of the singly substituted MoFe proteins indicate primary electron transfer rate constants approximately an order of magnitude slower than what is observed for wild-type MoFe protein, while no primary electron transfer is observed for the doubly substituted MoFe protein. The doubly substituted MoFe protein is able to interact with the Fe protein as shown by chemical crosslinking experiments. However, this protein does not form a tight complex with the Fe protein when treated with MgADP·AlF4 or when using the altered 127Δ Fe protein. Stopped flow spectrophotometry was also used to quantitate the first-order dissociation rate constants for the two component proteins. These results suggest that the 125Phe residues are involved in an early event(s) that occurs upon component protein docking and could be involved in eliciting MgATP hydrolysis.  相似文献   

14.
The heterodisulfide reductase complex HdrABC from Acidithiobacillus ferrooxidans was suggested to own novel features that act in reverse to convert the sulfane sulfur of GS n H species (n > 1) into sulfite in sulfur oxidation. The HdrC subunit is potentially encoded by two different highly upregulated genes sharing only 29 % identity in A. ferrooxidans grown in sulfur-containing medium, which were named as HdrC1 and HdrC2, respectively and had been confirmed to contain iron–sulfur cluster by expression and characterization, especially the HdrC1 which had been showed to bind only one [4Fe–4S] cluster by mutations. However, the mutations of the HdrC2 remain to be done and the detailed binding information of it is still unclear. Here, we report the expression, mutations, and molecular modeling of the HdrC2 from A. ferrooxidans. This HdrC2 had two identical motifs (Cx2Cx2Cx3C) containing total of eight cysteine residues potentially for iron–sulfur cluster binding. This purified HdrC2 was exhibited to contain one variable cluster converted between [4Fe–4S] and [3Fe–4S] according to different conditions by the UV-scanning and EPR spectra. The site-directed mutagenesis results of these eight residues further confirmed that the HdrC2 in reduction with Fe2+ condition loaded only one [4Fe–4S]+ with spin S = 1/2 ligated by the residues of Cys73, Cys109, Cys112, and Cys115; the HdrC2 in natural aeration condition lost the Fe atom ligated by the residue of Cys73 and loaded only one [3Fe–4S]0 with spin S = 0; the HdrC2 in oxidation condition loaded only one [3Fe–4S]+ with spin S = 1/2. Molecular modeling results were also in line with the experiment results.  相似文献   

15.
A species of Dechloromonas, strain UWNR4, was isolated from a nitrate-reducing, enrichment culture obtained from Wisconsin River (USA) sediments. This strain was characterized for anaerobic oxidation of both aqueous and chelated Fe(II) coupled to nitrate reduction at circumneutral pH. Dechloromonas sp. UWNR4 was incubated in anoxic batch reactors in a defined medium containing 4.5–5 mM NO3 ?, 6 mM Fe2+ and 1–1.8 mM acetate. Strain UWNR4 efficiently oxidized Fe2+ with 90 % oxidation of Fe2+ after 3 days of incubation. However, oxidation of Fe2+ resulted in Fe(III)-hydroxide-encrusted cells and loss of metabolic activity, suggested by inability of the cells to utilize further additions of acetate. In similar experiments with chelated iron (Fe(II)-EDTA), encrusted cells were not produced and further additions of acetate and Fe(II)-EDTA could be oxidized. Although members of the genus Dechloromonas are primarily known as perchlorate and nitrate reducers, our findings suggest that some species could be members of microbial communities influencing iron redox cycling in anoxic, freshwater sediments. Our work using Fe(II)-EDTA also demonstrates that Fe(II) oxidation was microbially catalyzed rather than a result of abiotic oxidation by biogenic NO2 ?.  相似文献   

16.
Stefan Nordlund  Ulla Eriksson 《BBA》1979,547(3):429-437
Nitrogenase activity of ‘membrane-free’ extracts, produced from nitrogenstarved Rhodospirillum rubrum to which 4 mM NH+4 had been added is only about 10% of the activity in the control. The activity could be restored to 80% by including the membrane component, earlier found to activate R. rubrum nitrogenase, in the reaction mixture. The relation between this ‘switch-off/switch-on’ effect and the function of the membrane component is discussed.Hydrogen production catalyzed by R. rubrum nitrogenase is also dependent on activation by the membrane component. Hydrogen production is inhibited by acetylene but the degree of inhibition is dependent on the nitrogenase component ratio. The strongest inhibition is achieved at low MoFe protein/Fe protein ratios. The ATP2 e? values are 4–5 at the component ratios giving the highest activity and increase at high MoFe protein/Fe protein ratios. CO inhibits acetylene reduction but has no effect on the hydrogen production.  相似文献   

17.
The biosynthesis of the organometallic H cluster of [Fe–Fe] hydrogenase requires three accessory proteins, two of which (HydE and HydG) belong to the radical S-adenosylmethionine enzyme superfamily. The third, HydF, is an Fe–S protein with GTPase activity. The [4Fe–4S] cluster of HydF is bound to the polypeptide chain through only the three, conserved, cysteine residues present in the binding sequence motif CysXHisX(46-53)HisCysXXCys. However, the involvement of the two highly conserved histidines as a fourth ligand for the cluster coordination is controversial. In this study, we set out to characterize further the [4Fe–4S] cluster of HydF using Mössbauer, EPR, hyperfine sublevel correlation (HYSCORE), and resonance Raman spectroscopy in order to investigate the influence of nitrogen ligands on the spectroscopic properties of [4Fe–4S]2+/+ clusters. Our results show that Mössbauer, resonance Raman, and EPR spectroscopy are not able to readily discriminate between the imidazole-coordinated [4Fe–4S] cluster and the non-imidazole-bound [4Fe–4S] cluster with an exchangeable fourth ligand that is present in wild-type HydF. HYSCORE spectroscopy, on the other hand, detects the presence of an imidazole/histidine ligand on the cluster on the basis of the appearance of a specific spectral pattern in the strongly coupled region, with a coupling constant of approximately 6 MHz. We also discovered that a His-tagged version of HydF, with a hexahistidine tag at the N-terminus, has a [4Fe–4S] cluster coordinated by one histidine from the tag. This observation strongly indicates that care has to be taken in the analysis of data obtained on tagged forms of metalloproteins.  相似文献   

18.
Rapid oxidation processes relevant to the degradation of [4Fe4S] clusters in Clostridium pasteurianum ferredoxin were studied via direct (unmediated) heterogeneous electron transfer at a pyrolytic graphite electrode. Differential-pulse voltammograms of native [4Fe4S] ferredoxin showed two well-defined oxidation peaks corresponding to apparent E-values of +793 and +1120 mV at 5°C. Direct involvement of the cluster was established through parallel experiments with the 2[4Fe4Se] derivative for which peak positions were shifted. Square-wave voltammetry showed that the product of the first electron transfer, which may correspond to the ‘super-oxidised’ [4Fe4S]3+ oxidation level, undergoes rapid degradation (t12 < 1.6 ms at 5°C). The second oxidation process, as characterised by a significant (?100 mV) negative shift upon selenium substitution, very likely represents oxidation of S(Se) still associated with the protein and possibly contained within the remaining FES(Se) substructure.  相似文献   

19.
CYP199A2 from Rhodopseudomonas palustris CGA009 is a heme monooxygenase that catalyzes the oxidation of para-substituted benzoic acids. CYP199A2 activity is reconstituted by a class I electron transfer chain consisting of the associated [2Fe–2S] ferredoxin palustrisredoxin (Pux) and a flavoprotein palustrisredoxin reductase (PuR). Another [2Fe–2S] ferredoxin, palustrisredoxin B (PuxB; RPA3956) has been identified in the genome. PuxB shares sequence identity and motifs with vertebrate-type ferredoxins involved in Fe–S cluster assembly but also 50% identity with Pux and it mediates electron transfer from PuR to CYP199A2, albeit with lower steady-state turnover activity: 99 nmol (nmol P450)?1min?1 for 4-methoxybenzoic acid oxidation compared with 1,438 nmol (nmol P450)?1 min?1 for Pux. This difference mainly arises from weak CYP199A2–PuxB binding (K m 34.3 vs. 0.45 μM for Pux) rather than slow electron transfer (k cat 19.1 vs. 37.9 s?1 for Pux). Comparison of the 2.0-Å-resolution crystal structure of the PuxB A105R mutant with other vertebrate-type, P450-associated ferredoxins revealed similar protein folds but also significant differences in some loop regions. Therefore, PuxB offers a platform for studying ferredoxin–P450 recognition in class I P450 systems. Substitution of PuxB residues at key locations with those in Pux shows that Ala42, Cys43, and Ala44 in the [2Fe–2S] cluster binding loop and Met66 are important in electron transfer from PuxB to CYP199A2, whereas Phe73 and the C-terminal Ala105 were involved in both protein binding and electron transfer.  相似文献   

20.
The crystal structure of the ISC-like [2Fe–2S] ferredoxin (FdxB), probably involved in the de novo iron-sulfur cluster biosynthesis (ISC) system of Pseudomonas putida JCM 20004, was determined at 1.90-Å resolution and displayed a novel tail-to-tail dimeric form. P. putida FdxB lacks the consensus free cysteine usually present near the cluster of ISC-like ferredoxins, indicating its primarily electron transfer role in the iron-sulfur cluster. Orientation-selective electron–nuclear double resonance spectroscopic analysis of reduced FdxB in conjunction with the crystal structure has identified the innermost Fe2 site with a high positive spin population as the nonreducible iron retaining the Fe3+ valence and the outermost Fe1 site as the reduced iron with a low negative spin density. The average g max direction is skewed, forming an angle of about 27.3° (±4°) with the normal of the [2Fe–2S] plane, whereas the g int and g min directions are distributed in the cluster plane, presumably tilted by the same angle with respect to this plane. These results are related to those for other [2Fe–2S] proteins in different electron transport chains (e.g. adrenodoxin) and suggest a significant distortion of the electronic structure of the reduced [2Fe–2S] cluster under the influence of the protein environment around each iron site in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号