首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of dietary selenium on the metabolism of 2-acetylaminofluorene (AAF) and on its interaction with hepatic DNA was studied in male, Charles River rats. All studies were commenced at least 3 weeks after placing weanling rats on a tomla yeastbased Se-deficient diet or the same diet supplemented with 0.5 ppm Se as Na2SeO3. Analysis of radioactive metabolites generated during in vitro incubation of [9-14C]-AAF with hepatic microsomes showed that Se-supplemented rats produced greater amounts of noncarcinogenic, phenolic metabolites than did Se-deficient animals. No significant difference was noted between the two dietary groups with respect to the production of the proximate carcinogenic metabolite,N-hydroxy-AAF. Analysis of urinary metabolites excreted during a 24-h period following a single ip injection of [9-14C]-AAF showed that Se-deficient animals produced 2–3 times as much N-hydroxy-AAF as did the supplemented rats. The increased excretion of the proximate carcinogenic metabolite by Se-deficient rats occurred both as the free and glucuronic acid conjugated forms. In contrast, Se-deficient rats excreted lower amounts of noncarcinogenic AAF metabolites. Taken together, these results suggest that dietary Se alters AAF biotransformation so as to decrease metabolic activation while enhancing detoxification pathways. The effect of dietary Se on AAF-DNA interactions was assessed in two ways. First, it was found that Se had no effect on the total amount of AAF residues covalently bound to hepatic DNA in vivo. This lack of effect was observed both at early (1-24 h) and late (4-7 d) intervals after administering a single ip injection of [9-14C]-AAF to rats from both dietary groups. In contrast, alkaline sucrose gradient analysis revealed a marked protective.effect of Se against AAF-induced DNA single-strand breaks. Further studies showed that the protective effect of Se was not mediated by a more rapid rate of repair of DNA damage. Accordingly, in addition to its favorable actions on carcinogen metabolism, the ability of Se to protect DNA against reactive metabolites may play a role in its reported anticarcinogenic activity.  相似文献   

2.
In the present study we determined the age-related effect of methionine-enriched diet, a model of hyperhomocysteinemia, on the level of plasma homocysteine and hepatic global DNA methylation in rats. Feeding methionine diet to middle-aged rats for only 14 days resulted in a significant increase in plasma homocysteine level and DNA hypomethylation. In contrast, feeding the methionine-containing diet for 2 weeks to juvenile or post-pubertal animals did not alter the level of plasma homocysteine or hepatic DNA methylation. Supplementation of the methionine-enriched diet with vitamins B6, B12 and folic acid prevented both hepatic DNA hypomethylation and an increase of plasma homocysteine concentration in the middle-aged rats. These findings indicate that the elevated level of plasma homocysteine may be indicative of much broader and deeper alterations in intracellular methylation dysfunction, and suggest that dietary enrichment with B-vitamins is essential for the metabolism of homocysteine, especially in adult animals.  相似文献   

3.
Previous studies have shown that the presence of oats in the diet contributes to formation of I-compounds (age-dependent covalent DNA modifications detected by 32P-postlabeling assay) in female Sprague-Dawley rat liver DNA. The current study explored the possible ingredients in oats responsible for the observed effects on DNA. Feeding AIN-76A diet containing 5% oat lipids (obtained by methanol extraction and dissolved in trioctanoin) in place of corn oil for 2 months successfully induced the formation of 3 oats-specific (spots 2-4) and 4 natural ingredient diet-specific I-compounds (spots 6-9) in liver DNA. Barley, an oatlike cereal, induced 3 of these spots at very low intensities but not the 3 oats-specific I-spots. Oral administration of oat lipids to weanling rats of both sexes for 7 days elicited trace amounts of the oats-specific spots and spot 9 in liver DNA. However, when oat lipids were given at 6 or 9 weeks of age, the oats-specific spots were detected at high levels in female but not in male rats. These oats-related DNA modifications were also present in 6-week-old female rats which had received oat lipids p.o. for 2 or 3 days or i.p. for 4 days. Rats given trioctanoin or extracts from natural ingredient Wayne diet (lacking oats) did not show any of these spots. On the other hand, rats treated with extracts from an oats-containing Teklad diet displayed a trace amount of one of these I-compounds. Oat lipids did not induce any extra spots in rat kidney DNA. Feeding of AIN diet supplemented with oats to female Syrian hamsters did not elicit any renal or hepatic DNA alterations, as detected by 32P-postlabeling. Rats fed oat lipids-supplemented AIN diet or Purina diet showed the highest levels of I-compounds overall in liver among all dietary groups and these two groups also had significantly higher hepatic DNA synthesis rates. Oat lipids enhanced kidney DNA synthesis also. The total hepatic or renal cytochrome P-450 contents were not significantly affected by different diets. These results demonstrate a novel link between a natural dietary ingredient and covalent DNA modifications and shed light on the origins of certain I-compounds.  相似文献   

4.
5.
The interrelationships between mycotoxins and the utilization of dietary protein are reviewed. Acute aflatoxicosis is characterized by reduced growth and fatty infiltration of the liver. Studies with poultry, swine, and monkeys have shown that supplements of dietary protein beyond normal requirements can overcome these conditions. High-protein diets, however, have been shown to promote hepatoma characteristic of chronic aflatoxicosis in rats. Aflatoxin interferes with utilization of dietary protein by inhibiting synthesis of DNA, RNA, and protein. High-protein diets promote the metabolism of aflatoxin by the hepatic microsomal drug-metabolizing enzyme system. The Fusarium mycotoxin zearalenone increases membrane permeability and promotes uterine synthesis of DNA, RNA, and protein. Supplements of dietary protein overcome growth reduction due to zearalenone and reduce the metabolic half-life of the toxin by promoting urinary excretion of free, unmetabolized zearalenone in the rat. The trichothecene mycotoxins disrupt normal protein metabolism by inactivating the ribosomal cycle. Protein supplements appear to have little effect on trichothecene mycotoxicoses. Most mycotoxins impair utilization of dietary protein. The effectiveness of protein supplements in overcoming mycotoxicoses will depend on the mycotoxin in question.  相似文献   

6.
The present study demonstrates that the rat liver obtains most of its triglyceride fatty acids from dietary sources. The dietary and adipose tissue contributions of linoleic acid for hepatic triglyceride esterification were shown to be 50.42 and 13.85 micro moles, respectively, during a 4-day period. When ethanol provided 40% of the caloric intake, fatty liver developed and hepatic triglyceride content increased threefold. Under these conditions, the dietary and adipose tissue contributions of linoleic acid were estimated at 192.85 and 10.73 micro moles, respectively. This increase in dietary fatty acid utilization was sufficient to account for the entire increase in esterified hepatic linoleic acid. Any explanation of these observations must include the high dietary fatty acid utilization in both control and ethanol-treated animals. One possibility is that most dietary lipids first enter a rapidly turning over pool in adipose tissue from which most hepatic triglyceride fatty acids are derived. Another is that dietary fatty acids, incorporated into chylomicrons, are stored separately and used preferentially by the liver as compared with lipids derived from adipose tissue and bound to albumin. The pros and cons of these possibilities are discussed.  相似文献   

7.
Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine.  相似文献   

8.
We have recently shown that the long-term ingestion of dietary diacylglycerol (DAG) mainly containing 1,3-isoform reduces body fat accumulation in humans as compared to triacylglycerol (TAG) with the same fatty acid composition. The fat reduction in this human experiment was most pronounced in visceral fat and hepatic fat. Recent animal studies have also indicated that dietary DAG induces alteration of lipid metabolism in the rat liver. In the present study, the dietary effects of DAG on high fat diet-induced hepatic fat accumulation and hepatic microsomal triglyceride transfer protein (MTP) activity were examined in comparison with those of TAG diet in rats. When the TAG oil content was increased from 10 to 30 g/100 g diet, hepatic TAG concentration, hepatic MTP activity and MTP large subunit mRNA levels were significantly increased after 21 days. However, when the dietary TAG oil (30 g/100 g diet) was replaced with the same concentration of DAG oil with the same fatty acid composition, the increase of the TAG concentration and the MTP activity in the liver were significantly less and the mRNA levels remained unchanged. The MTP activity levels correlated significantly with hepatic TAG concentration.These results showed that dietary DAG may suppress high fat diet-induced MTP activity in the liver, and indicated the possibility that hepatic TAG concentration may regulate hepatic MTP activity.  相似文献   

9.
We report that the maternal folate status can influence folate-mediated one-carbon metabolism and DNA methylation in the placenta. Thirty-six female Sprague-Dawley rats were divided into the following three dietary groups: folate-supplemented (FS; 8 mg/kg folic acid, n=12), homocystine- and folate-supplemented (HFS; 0.3% homocystine and 8 mg/kg folic acid, n=12) and homocystine-supplemented and folate-deficient (HFD; 0.3% homocystine and no folic acid, n=12). The animals were fed their experimental diets from 4 weeks prior to mating until Day 20 of pregnancy (n=7-9 per group). The HFS diet increased the plasma homocysteine and placental DNA methylation but did not affect plasma folate, vitamin B-12, S-adenosyl methionine (SAM) or S-adenosyl homocysteine (SAH) levels, or the SAM/SAH ratio in the liver and placenta compared with the FS diet. The HFD diet induced severely low plasma folate concentrations, with plasma homocysteine levels increasing up to 100 micromol/L, and increased hepatic SAH and decreased placental SAM levels and SAM/SAH ratio in both tissues, with a concomitant decrease in placental DNA methylation. Placental DNA methylation was significantly correlated with placental (gamma=0.819), hepatic (gamma=0.7) and plasma (gamma=0.752) folate levels; plasma homocysteine level (gamma=-0.688); hepatic SAH level (gamma=-0.662) and hepatic SAM/SAH ratio (gamma=0.494). These results suggest that the maternal folate status in hyperhomocysteinemic rats influences the homeostasis of folate-mediated one-carbon metabolism and the methyl pool, which would, in turn, affect placental DNA methylation by altering the methylation potential of the liver.  相似文献   

10.
Methionine-choline-deficient (MCD) diets that cause steatohepatitis in rodents are typically enriched in polyunsaturated fat. To determine whether the fat composition of the MCD formula influences the development of liver disease, we manufactured custom MCD formulas with fats ranging in PUFA content from 2% to 59% and tested them for their ability to induce steatohepatitis. All modified-fat MCD formulas caused identical degrees of hepatic steatosis and resulted in a similar distribution of fat within individual hepatic lipid compartments. The fatty acid composition of hepatic lipids, however, reflected the fat composition of the diet. Mice fed a PUFA-rich MCD formula showed extensive hepatic lipid peroxidation, induction of proinflammatory genes, and histologic inflammation. When PUFAs were substituted with more saturated fats, lipid peroxidation, proinflammatory gene induction, and hepatic inflammation all declined significantly. Despite the close relationship between PUFAs and hepatic inflammation in mice fed MCD formulas, dietary fat had no impact on MCD-mediated damage to hepatocytes. Indeed, histologic apoptosis and serum alanine aminotransferase levels were comparable in all MCD-fed mice regardless of dietary fat content. Together, these results indicate that dietary PUFAs promote hepatic inflammation but not hepatotoxicity in the MCD model of liver disease. These findings emphasize that individual dietary nutrients can make specific contributions to steatohepatitis.  相似文献   

11.
The effects of dietary 0.2% inositol stereoisomers on the hepatic lipids and myo-inositol (MI) status in rats fed with 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) were investigated. Dietary MI reduced the hepatic lipids in the rats fed with DDT. Dietary D-chiro-inositol (DCI) and L-chiro-inositol (LCI) both had a promoting effect on the increase in hepatic lipids due to DDT feeding. Dietary MI enhanced the hepatic free MI level and the phosphatidylinositol/phosphatidylcholine ratio, but dietary DCI reduced the level and ratio.  相似文献   

12.
A cDNA clone containing sequences complementary to the mRNA coding for rat hepatic 6-phosphogluconate dehydrogenase has been isolated and used to measure changes in specific mRNA levels during dietary and hormonal regulation of this enzyme. Hepatic mRNA was fractionated by sucrose gradient centrifugation to enrich for 6-phosphogluconate dehydrogenase mRNA sequences. A cDNA library was prepared from the fraction with maximal activity and then screened by differential colony hybridization using probes synthesized either from 6-phosphogluconate dehydrogenase mRNA enriched by polysome immunoadsorption or from unenriched hepatic mRNA. A single colony giving an appropriate differential signal was confirmed to contain sequences encoding 6-phosphogluconate dehydrogenase by specific immunoprecipitation of hybrid-selected translational products. 6-Phosphogluconate dehydrogenase mRNA contains about 2400 bases. The cloned cDNA comprises about 880 bases, or 35% of the mRNA. Southern analysis of restriction endonuclease digests of genomic DNA suggests that the major 6-phosphogluconate dehydrogenase gene is probably present in a single copy in the rat genome. Feeding a fat-free, high carbohydrate diet and administration of thyroid hormone increased the concentration of hybridizable 6-phosphogluconate dehydrogenase mRNA in liver. Thus, both dietary and hormonal regulation of 6-phosphogluconate dehydrogenase synthesis occurs at a pretranslational level.  相似文献   

13.
14.
The premise that the intrinsic level of expression of hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase determines the relative sensitivity to the serum cholesterol raising action of dietary cholesterol was examined in 9 strains of rat. For further comparison purposes, hamsters were also examined. The basal expression of hepatic HMG-CoA reductase, extent of feedback regulation by cholesterol, and changes in serum cholesterol levels and the hepatic low-density lipoprotein (LDL) receptor in response to cholesterol challenge were determined in these animals. The Sprague-Dawley, Wistar-Furth, Spontaneously Hypertensive, Lewis, and Wistar-Kyoto rats were all very resistant to dietary cholesterol and exhibited hepatic HMG-CoA reductase activities above 150 pmol / min(-1) / mg(-1). The Buffalo, Brown Norway, and Copenhagen 2331 rats had hepatic HMG-CoA reductase activities below 90 pmol / min(-1) / mg(-1) and had increases in serum cholesterol levels ranging from 12 to 33 mg/dl when given a 4-day, 1% cholesterol challenge. The extent of feedback regulation was reduced to only 3-fold in the Fisher 344 and Brown Norway rats that exhibited significant increases in serum cholesterol levels when given a cholesterol challenge. The Golden Syrian hamsters exhibited the largest increase (197 mg/dl) in serum cholesterol levels in response to dietary cholesterol and the lowest basal expression of hepatic HMG-CoA reductase (3.3 pmol / min(-1) / mg(-1)). Hepatic LDL receptor levels were not significantly decreased by dietary cholesterol in any of the animals. The data from these inbred rats and the hamsters strongly support the conclusion that the animals expressing the highest levels of hepatic HMG-CoA reductase are the most resistant to the serum cholesterol raising action of dietary cholesterol.  相似文献   

15.
16.
In order to investigate whether cholesterol intake influences the hepatic copper content of rabbits, we compared the hepatic copper content of two rabbit inbred strains after feeding the animals a control or a cholesterol-rich diet. One strain was not reactive to dietary cholesterol (IIIVO/JU), whereas the other strain was reactive to dietary cholesterol (AX/JU). The coefficient of inbreeding (F) >0.95 for both strains. Dietary cholesterol-reactive rabbits when compared with their non-reactive counterparts had a higher hepatic copper content. The consumption of a hypercholesterolemic diet decreased liver copper concentration (expressed in micro g/g dry weight) in both strains of rabbits, which was (in part) due to dietary-induced hepatomegaly. A decrease in the absolute hepatic copper content was found only in the dietary cholesterol-reactive inbred strain. It is discussed that differences in glucocorticoid levels may be responsible for the strain difference in liver copper content. The cholesterol effect on the hepatic copper content in the reactive strain might be caused by an increased bilirubin secretion.  相似文献   

17.
18.
19.
The low dietary starch utilisation by rainbow trout (Oncorhynchus mykiss) may be attributed to a dysfunction of the nutritional regulation of the hepatic glucose/glucose-6-phosphate cycle. The present study was initiated to analyse the regulation of activity and gene expression of hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) by dietary carbohydrates in this species. We found that even a single meal containing 24% of glucose is sufficient to induce the GK expression (mRNA and activity) as in mammals. In contrast, although the inhibitory effect of dietary glucose on G6Pase expression is observed at the molecular level, the G6Pase activity is not significantly inhibited by dietary glucose. Thus, in contrast to the gluconeogenic G6Pase enzyme, a rapid adaptation of the hepatic glycolytic GK enzyme to dietary glucose seems effective in rainbow trout. These results suggest that in carnivorous rainbow trout, the liver is capable to strongly regulate the utilisation of glucose but not the synthesis of glucose.  相似文献   

20.
M J Stark  R Frenkel 《Life sciences》1974,14(8):1563-1575
The activity of rat liver malic enzyme shows a marked increase when the animals are maintained on a restricted protein diet. Of the NADP-linked dehydrogenases tested (malic enzyme, glucose-6-phosphate dehydrogenase, and isocitrate dehydrogenase), the response is confined only to malic enzyme. Dietary sucrose is not required for the increase in activity, but elevated dietary levels of this disaccharide increase hepatic malic enzyme regardless of dietary protein. Glucose-6-phosphate dehydrogenase activity is increased by dietary sucrose provided adequate dietary protein is supplied. The specificity of the response to lowered dietary protein shown by malic enzyme suggests that the control of the hepatic enzyme is mediated by processes different from those controlling the activity of glucose-6-phosphate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号