首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work deals with the structural-functional organization of regulatory regions of messenger RNAs. Some principles of the action of a translational repressor (coat protein) and the formation of the ribosomal initiation complex at the replicase cistron have been studied with MS2 phage RNA. When the complex of MS2 RNA with the coat protein is treated with T1 ribonuclease, the coat protein selectively protects mainly two fragments (59 and 103 nucleotides in length) from digestion; these fragments contain the intercistronic regulatory region and the beginning of the MS2 replicase cistron. These polynucleotides have been isolated in a pure state and their primary structure has been established.It has been established that both MS2 RNA fragments contain all the necessary information for specific interaction with MS2 coat protein and form a complex with it with an efficiency close to that observed in the case of native MS2 RNA. They also provide the normal polypeptide chain initiation at the replicase cistron. Enzymatic binding of the second aminoacyl-tRNA and electrophoretic analysis of N-terminal dipeptides prove that only the true initiator codon of the replicase cistron is recognized by a ribosome despite the presence of a few additional AUG triplets within the polynucleotides. Under conditions of limited hydrolysis by T1 ribonuclease, the beginning of the replicase cistron has been removed from the shortest polynucleotide leading to a complete loss of its ability to bind both the coat protein and a ribosome.Some principles of the functioning of the regulatory region in MS2 RNA as well as the nature of the initiator signal of protein biosynthesis are discussed.  相似文献   

2.
The complete nucleotide sequence of the group II RNA coliphage GA   总被引:14,自引:0,他引:14  
The complete nucleotide sequence of the RNA coliphage GA, a group II phage, is presented. The entire genome comprises 3466 bases. Three large open reading frames were identified, which correspond to the maturation protein gene (390 amino acids), the coat protein gene (129 amino acids) and the replicase beta-subunit protein gene (531 amino acids). In addition, untranslated regions occur at the 5' (135 bases) and 3' (122 bases) ends of the molecule. Two intercistronic untranslated regions occur between the cistrons for the maturation and coat proteins, and between the coat and beta-subunit proteins. We have compared the nucleotide sequence of GA RNA with the published sequence of MS2 RNA, and show that they are related. The comparative structures of two important regulatory regions are presented; the coat protein binding site which is involved in translational repression of the replicase beta-subunit protein gene, and a hairpin in a region proximal to the lysis protein gene.  相似文献   

3.
4.
MS2噬菌体为正义单链RNA噬菌体,基因组含有3569个核苷酸,编码成熟酶蛋白、衣壳蛋白、复制酶蛋白和裂解蛋白。MS2噬菌体复制酶编码基因5'端一个由19个碱基组成的茎环结构(又称包装位点)是衣壳蛋白二聚体与RNA相互作用的部位,二者相互作用形成的复合物是启动噬菌体自我包装的信号。MS2噬菌体衣壳蛋白与包装位点结合的特异性已被应用于RNA病毒核酸检测的标准物质、校准品和质控品的研究,实时动态监测活细胞内RNA的运动,以及RNA体内递送载体的研究等领域。  相似文献   

5.
The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved.  相似文献   

6.
7.
8.
A DNA fragment containing the structural gene for the 5 S ribosomal RNA and intergenic regions before and after the 35 S ribosomal RNA precursor gene of Saccharomyces cerevisiae has been amplified in a bacterial plasmid and physically mapped by restriction endonuclease cleavage and hybridization to purified yeast 5 S ribosomal RNA. The nucleotide sequence of the DNA fragments carrying the 5 S ribosomal RNA gene and adjacent regions has been determined. The sequence unambiguously identifies the 5 S ribosomal RNA gene, determines its polarity within the ribosomal DNA repeating unit, and reveals the structure of its promoter and termination regions. Partial DNA sequence of the regions near the beginning and end of the 35 S ribosomal RNA gene has also been determined as a preliminary step in establishing the structure of promoter and termination regions for the 35 S ribosomal RNA gene.  相似文献   

9.
The coat protein of the single stranded RNA bacteriophages acts as a translational repressor by binding with high affinity to a target RNA that encompasses the ribosomal binding site of the replicase gene. We have expressed this procaryotic RNA-binding protein in mammalian cells. Using the coat protein binding site attached to the HIV-1 5' leader RNA, we tested for the biological effect of co-expressed bacteriophage protein. We found that HIV-1 LTR-directed expression within this context was inhibited in trans by the coat protein. This example suggests the feasibility of using procaryotic RNA-binding proteins as genetic modulators in eucaryotic cells.  相似文献   

10.
11.
Evidence is presented for tertiary structural interaction(s) (interactions(s) between two regions of an RNA molecule that are widely separated in the RNA sequence) within the 5'-one third of the 16S ribosomal RNA of Escherichia coli that constitutes the binding site of protein S4. The two main interacting RNA regions were separated by about 120 nucleotides (sections Q to M) of the 16S RNA sequence. A second, smaller gap, of 13 nucleotides, occurred within section C". The two main interacting regions contain about 150 nucleotides (sections H" to Q) and 160 nucleotides (sections M to C"). They are folded back on one another and, especially in the presence of protein S4, are strongly protected against ribonuclease digestion. The intermediate region (sections Q to M), however, is relatively accessible to ribonucleases in the S4-RNP. By partial removal of subfragments from the RNA complex it was possible to localise the two main interacting sites within sections H" - H and sections I" - C". Three main criteria for the specificity of the RNA-RNA interactions were invoked and satisfied. The possibility of other tertiary structural RNA-RNA interactions occurring in other regions of the 16S RNA is discussed. Finally, all the structural information on the S4-RNP is summarised and a tentative model is proposed.  相似文献   

12.
Ribosomal protein S1 is known to play an important role in translational initiation, being directly involved in recognition and binding of mRNAs by 30S ribosomal particles. Using a specially developed procedure based on efficient crosslinking of S1 to mRNA induced by UV irradiation, we have identified S1 binding sites on several phage RNAs in preinitiation complexes. Targets for S1 on Q beta and fr RNAs are localized upstream from the coat protein gene and contain oligo(U)-sequences. In the case of Q beta RNA, this S1 binding site overlaps the S-site for Q beta replicase and the site for S1 binding within a binary complex. It is reasonable that similar U-rich sequences represent S1 binding sites on bacterial mRNAs. To test this idea we have used E. coli ssb mRNA prepared in vitro with the T7 promoter/RNA polymerase system. By the methods of toeprinting, enzymatic footprinting, and UV crosslinking we have shown that binding of the ssb mRNA to 30S ribosomes is S1-dependent. The oligo(U)-sequence preceding the SD domain was found to be the target for S1. We propose that S1 binding sites, represented by pyrimidine-rich sequences upstream from the SD region, serve as determinants involved in recognition of mRNA by the ribosome.  相似文献   

13.
14.
The genes coding for the two classes of ribosomal RNA molecules, 5S RNA and 18+28S RNA, have been localized in the Norway rat (Rattus norvegicus). The 18+28S RNA cistrons are found on three chromosomes, at secondary constrictions on the short arms of chromosomes 3 and 12 and at the telomere of the short arm of chromosome 11. These sites were confirmed using the silver staining technique for nucleolar organizer regions. Two sites were found for the 5S RNA genes; one is closely linked to the 18+28S gene site on chromosome 12. The second site is at or near the telomere of the long arm of chromosome 19.  相似文献   

15.
The tertiary structure of the protein-associated yeast ribosomal 5 S RNA was examined using ethylnitrosourea reactivity as a probe for phosphodiester bonds. A reduced reactivity was consistently observed in at least nine residues within four distinct regions of the RNA sequence. Seven of these were also observed in three regions of the free RNA molecule while two, A27 and G30, were only present in the ribonucleoprotein complex. The results strongly suggest that the tertiary structure of the free eukaryotic 5 S RNA is largely conserved in the 5 S RNA-protein complex although it appears to be further stabilized in interaction with the ribosomal protein.  相似文献   

16.
The secondary structure of genomic RNA from the coliphage Q beta has been examined by electron microscopy in the presence of varying concentrations of spermidine using the Kleinschmidt spreading technique. The size and position of structural features that cover 70% of the viral genome have been mapped. The structural features that are visualized by electron microscopy in Q beta RNA are large. They range in size from 170 to 1600 nucleotides. A loop containing approximately 450 nucleotides is located at the 5' end of the RNA. It includes the initiation region for the viral maturation protein. A large hairpin containing approximately 1600 nucleotides is located in the center of the molecule. It is multibranched and includes most of the viral coat gene, the readthrough region of the A1 gene, and approximately one third of the viral replicase gene. Within the central hairpin, the initiation region for the viral replicase gene pairs with a region within the distal third of the viral coat gene. This structure may participate in the regulation of translational initiation of the viral replicase gene. Two structural variants of the central hairpin were observed. One of them brings the internal S and M viral replicase binding regions into juxtaposition. These observations suggest that the central hairpin may also participate in the regulation of translation of the viral coat gene. The secondary structures that are observed in Q beta RNA differ significantly from structures that we described previously in the genomic RNA of coliphage MS2 but are similar to structures we observed by electron microscopy in the related group B coliphage SP.  相似文献   

17.
As a component of bacteriophage Qbeta replicase, S1 is required both for initiation of Qbeta minus strand RNA synthesis and for translational repression, which has been traced to the ability of the enzyme to bind to an internal site in the Qbeta RNA molecule. Previously, Senear and Steitz (Senear, A. W., and Steitz, J. A. (1976) J. Biol. Chem. 251, 1902-1912) found that isolated S1 protein binds specifically to an oligonucleotide spanning residues -38 to -63 from the 3' terminus of Qbeta RNA. Here we report that S1 also interacts strongly with a second oligonucleotide in Qbeta RNA, which is derived from the region recognized by replicase just 5' to the Qbeta coat protein cistron. Both sequences exhibit pyrimidine-rich regions.  相似文献   

18.
The Drosophila melanogaster RPS17 gene encoding ribosomal protein S17   总被引:5,自引:0,他引:5  
A human ribosomal protein S17 cDNA [Chen et al., Proc. Natl. Acad. Sci. USA 83 (1986) 6907-6911] was used as heterologous probe to isolate S17 clones from Drosophila genomic and cDNA recombinant libraries. Five S17 genomic clones were recognized; all contained overlapping regions of a single chromosomal site. Subsequently the Drosophila RPS17 gene was mapped by in situ hybridization to chromosome 3L, band 67B1-5. The locus spans approximately 1000 bp of DNA and includes four exons. It is preceded by conventional CAAT and TATA RNA polymerase II promoter motifs. The 131 amino acid protein encoded within Drosophila RPS17 is similar to ribosomal proteins from several other eukaryotes. Comparison of eukaryotic S17 proteins' primary structures as well as the number and location of their genes' intervening sequences suggest that S17 is a relatively recent addition to the ribosomal protein family, probably post-dating divergence of eukaryotes and prokaryotes.  相似文献   

19.
The functionally active fragments MS2 R(-53 leads to 6) and MS2 R(-53 leads to 3) comprising the regulatory region for the replicase cistron have been isolated from MS2 RNA-coat protein complex following T1 RNase digestion. In order to obtain shorter fragments, active in coat protein binding and initiation of translation, MS2 R(-53 leads to 6) was cleaved with S1 nuclease. The results indicate that S1 nuclease attacks the most susceptible loop regions of the two hairpin helices of MSZ R(-53) leads to 6). Among the three fragments which have been isolated, only MS2 R(-35/33 leads to 6) containing the intact hairpin (b) region with initiation codon AUG is active in the coat protein binding. Functional activity exerted by another polynucleotide MS R(-17 leads to 6) supports the assumption that specific binding with the coat protein is determined by the hairpin (b) region prior to the replicase cistron.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号