首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The in vitro and in vivo performance of three different semipermeable microdialysis membranes was compared: a proprietary polycarbonate-ether membrane made by Carnegie Medecin; cuprophan, a regenerated cellulose membrane; and polyacrylonitrile. When microdialysis probes were tested in a stirred in vitro solution, large and statistically significant differences among the three membranes in extraction of acid metabolites (3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, and homovanillic acid) and acetaminophen were found. Polyacrylonitrile had the highest extractions in vitro. In contrast, when microdialysis probes were implanted in vivo (in rat striatum), extraction of acid metabolites and acetaminophen did not differ significantly among the different membranes. These results are consistent with predictions made by a mathematical model of microdialysis and can be explained by the fact that in vitro the main factor limiting extraction is membrane resistance to diffusion, whereas tissue resistance to diffusion plays a more dominant role in vivo. These findings suggest that (aside from differences in surface area), the choice of semipermeable membrane will generally have little effect on in vivo microdialysis results. Furthermore, in vitro measurements of microdialysis probe extractions are not a reliable way of calibrating in vivo performance.  相似文献   

2.
Central dopamine (DA) and 5-hydroxytryptamine (5-HT) metabolism was monitored in conscious, freely moving rats by determination of levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) in CSF samples withdrawn repeatedly from the cisterna magna and treated with acid to hydrolyse DOPAC and HVA conjugates. The effect of tyrosine on DA metabolism was investigated. Time courses of metabolite concentrations in individual rats in a quiet room showed that tyrosine (20, 50, or 200 mg/kg i.p.) was without significant effect; brain changes were essentially in agreement. However, the increases of CSF DOPAC and HVA levels that occurred on immobilisation for 2 h were further enhanced by tyrosine (200 mg/kg). The associated increases of 5-HIAA level were unaffected. The corresponding increases of DA metabolite concentrations in the brains of immobilised rats given tyrosine were less marked than the CSF changes and only reached significance for "rest of brain" DOPAC. The CSF studies revealed large interindividual variation in the magnitude and duration of the effects of immobilisation on transmitter amine metabolism. These results may help toward the elucidation of possible relationships between the neurochemical and behavioural effects of stress.  相似文献   

3.
Abstract: In vivo microdialysis coupled with HPLC and electrochemical detection was used to monitor extracellular levels of 3, 4-dihydroxyphenylacetic acid (DOPAC) of the locus ceruleus (LC) in halothane-anesthetized rats. The identity of DOPAC was confirmed by experiments showing that the chromatographic peak was totally suppressed after inhibition of monoamine oxidase by pargyline. Histological examinations allowed to relate the quantity of DOPAC measured in the dialysates with the localization of the probe implantation site. We found that the DOPAC concentration was inversely proportional to the distance between the probe and the lateral border of the LC. Regardless of the caudorostral level of the nucleus, concentrations were maximal when the axis of the probe was 100 μ M from the lateral border of the LC and decreased by 53% when this distance reached 300 μ M . Activation of LC noradrenergic neurons by systemic administration of the α2-antagonist piperoxane increased by 100% DOPAC concentrations in LC dialysates. These results suggest that the DOPAC measured by microdialysis could be considered an indicator of the functional state of LC noradrenergic neurons.  相似文献   

4.
The present study summarizes the results of an in vitro and in vivo comparison of the apparent 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid, and 3,4-dihydroxyphenylacetic acid dialysis performance of three types of membrane frequently used in intracerebral microdialysis experiments. The dialysis fiber types examined were a regenerated cellulose Cuprophan (GF), a proprietary polycarbonate ether (CMA), and a polyacrylonitrile/sodium methallylsulfonate copolymer (HOSPAL). The experiments unexpectedly revealed that the HOSPAL membrane-equipped probes displayed clearly aberrant 5-HT diffusion dynamics compared with GF and CMA probes, demonstrable not only in vitro, but also in in vivo experiments. In vitro, the GF and CMA membrane-equipped probes exhibited maximum relative recovery for 5-HT already in the first 20-min sample, whereas the 5-HT recovery of HOSPAL probes increased in a very slow and protracted manner over a period of a little less than 2 h. The GF and CMA probes further displayed an immediate washout of 5-HT when the probes were subsequently transferred to artificial CSF only-containing medium (no 5-HT), whereas approximately 2 h was required to yield near-total extinction of dialysate 5-HT with the standard HOSPAL probes. In vivo, the rat ventral hippocampal dialysate 5-HT output responses to K+ (100 mM) infusion, to Ca2+ omission, and to systemic 8-hydroxy-2-(di-n-propylamino)tetralin injection were all markedly retarded and blunted when HOSPAL instead of GF membrane-equipped probes were used. However, the 5-hydroxyindoleacetic acid and 3,4-dihydroxyphenylacetic acid extraction in vitro and in vivo were comparable using either of the membrane types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A dialysis cannula was implanted into rat striatum while the animals were anesthetized, and the area was perfused with Ringer solution while the animals were unanesthetized after at least 3 days following surgery. Concentrations of the metabolites of 3,4-dihydroxyphenylethylamine (DA) and 5-hydroxytryptamine (5-HT) in the perfusate were determined by HPLC with electrochemical detection. Levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the perfusate significantly decreased after pargyline administration (50 mg/kg i.p.), which may inhibit not only monoamine oxidase (MAO)-B but also MAO-A in these high doses. The level of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) also decreased after pargyline treatment, although change in the relative level of 5-HIAA was less than that of DOPAC or HVA. To clarify the mechanisms for the metabolism of monoamines in rat striatum, highly specific MAO-A and -B inhibitors were used in the following experiments. Treatment with l-deprenyl (10 mg/kg), a specific inhibitor for MAO-B, did not cause any statistically significant change in DOPAC, HVA, and 5-HIAA levels. No significant change was found in rat striatal homogenates at 2 h after the same treatment with l-deprenyl. In contrast, low-dose treatment (1 mg/kg) with clorgyline, a specific inhibitor for MAO-A, caused a significant decrease in levels of these three metabolites in both the perfusates and tissue homogenates. In addition to the above three metabolites, the level of 3-methoxytyramine, which is an indicator of the amount of DA released, greatly increased after treatment with a low dose (1 mg/kg) of clorgyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In vivo voltammetry or microdialysis was used to monitor catecholaminergic metabolism in the C1 region of the ventrolateral medulla oblongata of anesthetized rats. In vivo voltammetry allowed the recording of a catechol oxidation current (CA.OC) peak in this region. This CA.OC was suppressed after inhibition of monoamine oxidase by pargyline or after inhibition of tyrosine hydroxylase by alpha-methyl-p-tyrosine and was markedly increased after blockade of dopamine-beta-hydroxylase by FLA 63. Similar results were found when intracerebral microdialysis coupled with HPLC and electrochemical detection was used to measure the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) in the dialysates obtained from the C1 region: The changes in CA.OC and DOPAC concentration in the dialysates exhibited very similar kinetic characteristics in the three pharmacological experiments. These results support the involvement of DOPAC as a major component of the electrochemical signal recorded by voltammetry in the C1 group of adrenergic neurons.  相似文献   

7.
In vivo microdialysis was employed in order to characterize the steady-state kinetics of the turnover of specific dopamine and serotonin metabolites in the rat striatum 48 h after surgery. Inhibitors of monoamine oxidase (MAO; pargyline) and catechol-O-methyltransferase (COMT; Ro 40-7592) were administered, either separately or in conjunction, at doses sufficient to block these enzymes in the CNS. In some experiments, the acid metabolite carrier was blocked with probenecid. Temporal changes were then observed in the efflux of interstitial dopamine, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). The fractional rate constants for the accumulation or disappearance of the metabolites could be determined after pharmacological blockade of catabolic enzymes or the acid metabolite carrier. Interstitial 5-HIAA was found to be cleared with a half-life of approximately 2 h. After blockade of either MAO or COMT, HVA disappeared with a half-life of 17 min. Experiments employing probenecid suggested that some of the interstitial HVA was cleared by the acid metabolite carrier, the remainder being cleared by a probenecid-insensitive process, possibly conjugation. After MAO inhibition, DOPAC disappeared with an apparent half-life of 11.3 min. The rate of 3-MT accumulation after pargyline indicated that the majority of interstitial HVA (> 95%) is formed from DOPAC rather than 3-MT. The formation of 3-MT from interstitial dopamine, calculated from the accumulation rate of 3-MT after pargyline, appeared to follow first-order kinetics (k = 0.1 min-1).  相似文献   

8.
Abstract: An on-line microdialysis approach was developed to estimate changes in tyrosine hydroxylase activity in the locus ceruleus noradrenergic neurons of anesthetized rats by measuring the 3,4-dihydroxyphenylalanine (DOPA) acumulation in the extracellular fluid during perfusion of an aromatic amino acid decarboxylase inhibitor through a dialysis probe. The aromatic amino acid decarboxylase inhibitor used was difluoromethyl-DOPA, which was shown to be more stable than NSD 1015 or Ro 4-4602 in the perfusion fluid. A 1-h perfusion of a 10−4 mol/L of difluoromethyl-DOPA solution induced a linear increase in DOPA concentration in the locus ceruleus dialysates that achieved a steady state within 1 h. The identity of DOPA accumulated in dialysates during aromatic amino acid decarboxylase inhibition was confirmed by the disappearance of the chromatographic peak when DOPA formation was blocked by the administration of α-methyl- p -tyrosine. Systemic administration of the α2-antagonist piperoxane before difluoromethyl-DOPA perfusion markedly increased the DOPA concentration during both the accumulation and the steady-state periods, showing that the present technique is a suitable in vivo approach to monitor changes in tyrosine hydroxylase activity occurring in the locus ceruleus neurons.  相似文献   

9.
Abstract: It is common practice in microdialysis studies for probes to be “calibrated” in artificial CSF and in vitro recoveries determined for all substances to be measured in vivo. Dialysate concentrations of such substances are then “corrected” for in vitro recoveries to provide “estimates” of extracellular concentrations. At least for dopamine, in vitro and in vivo recoveries are significantly different and, therefore, an estimate of extracellular dopamine based on correction for in vitro recovery is likely to be erroneous. Generally, however, the relative relationships of such estimates among animals are of interest rather than the “true” extracellular values. Such relationships would be valid to the extent that estimated values are correlated with or predictive of true values. Using the “no net flux” procedure, the present study sought to determine, for both dopamine and its metabolite 3,4-dihydroxy-phenylacetic acid (DOPAC), whether in vitro and in vivo recoveries would correlate with each other as well as whether respective estimated and true (no net flux) values of these substances would correlate with each other. Probes (3 mm; BAS/CMed MF-5393), previously calibrated, were lowered into both the nucleus accumbens and striatum of freely moving rats the day before sample collection was begun. In vitro and in vivo recoveries were not significantly correlated (r= 0.1–0.3), for either dopamine or DOPAC. For both dopamine and DOPAC, however, there were significant correlations (r= 0.7–0.8) between estimated and true values. Surprisingly, when using these commercial probes, absolute dialysate levels for both substances were even better correlated (r = 0.9–0.95) with true values. This suggests that, with these probes, a direct comparison of dialysate concentrations can be used to determine relative changes in basal extracellular levels of dopamine and DOPAC when it is not practical to do no net flux studies (e.g., because of the time required to characterize a drug effect). The use of in vitro calibrations adjusts the values closer to the true values but also adds noise to each value and therefore should be avoided.  相似文献   

10.
Abstract: The effect of the antidepressant and selective noradrenaline reuptake blocker desipramine (DMI) on noradrenergic transmission was evaluated in vivo by dual-probe microdialysis. DMI (1, 3, and 10 mg/kg, i.p.) dose-dependently increased extracellular levels of noradrenaline (NA) in the locus coeruleus (LC) area. In the cingulate cortex (Cg), DMI (3 and 10 mg/kg, i.p.) also increased NA dialysate, but at the lowest dose (1 mg/kg, i.p.) it decreased NA levels. When the α2-adrenoceptor antagonist RX821002 (1 µ M ) was perfused in the LC, DMI (1 mg/kg, i.p.) no longer decreased but rather increased NA dialysate in the Cg. In electrophysiological experiments, DMI (1 mg/kg, i.p.) inhibited the firing activity of LC neurons by a mechanism reversed by RX821002. Local DMI (0.01–100 µ M ) into the LC increased concentration-dependently NA levels in the LC and simultaneously decreased NA levels in the Cg. This decrease was abolished by local RX821002 administration into the LC. The results demonstrate in vivo that DMI inhibits NA reuptake at somatodendritic and nerve terminal levels of noradrenergic cells. The increased NA dialysate in the LC inhibits noradrenergic activity, which in part counteracts the effects of DMI on the Cg. The modulation of cortical NA release by activity of DMI at the somatodendritic level is mediated through α2-adrenoceptors located in the LC.  相似文献   

11.
Abstract: Basal levels of endogenous 3,4-dihydroxyphenylalanine (DOPA) were detected by HPLC coupled with coulometric detection in dialysates from freely moving rats implanted 48–72 h earlier with transversal dialysis fibers in the dorsal caudate. Because decarboxylase inhibitor is absent in the Ringer's solution, this method allows monitoring of basal output of dopamine (DA) and 3,4-dihydroxyphenylacetic acid, as well as DOPA. Extracellular DOPA concentrations were reduced by the tyrosine hydroxylase inhibitor α-methylparatyrosine (200 mg/kg, i.p.) and by the dopaminergic agonist apomorphine (0.25 mg/kg, s.c.). The dopaminergic antagonist haloperidol (0.2 mg/kg, s.c.) stimulated DOPA output by about 60% over basal values. γ-Butyrolactone, at doses of 700 mg/kg, i.p., which are known to block dopaminergic neuronal firing and which reduce DA release, stimulated DOPA output maximally by 130% over basal values. Tetrodotoxin, which blocks DA release by blocking voltage-dependent Na+ channels, increased DOPA output maximally by 100% over basal values. The results indicate that basal DOPA can be detected and monitored in the extracellular fluid of the caudate of freely moving rats by transcerebral dialysis and can be taken as a dynamic index of DA synthesis in pharmacological conditions.  相似文献   

12.
Abstract: The effects of pregnenolone sulfate (Preg-S) administrations (0, 12, 48, 96, and 192 nmol intracerebroventricularly) on acetylcholine (ACh) release in the frontal cortex and dorsal striatum were investigated by on-line microdialysis in freely moving rats. Following Preg-S administration, extracellular ACh levels in the frontal cortex increased in a dose-dependent manner, whereas no change was observed in the striatum. The highest doses (96 and 192 nmol) induced a threefold increase above control values of ACh release, the intermediate dose of 48 nmol led to a twofold increase, whereas after the dose of 12 nmol, the levels of ACh were not different from those observed after vehicle injection. The increase in cortical ACh reached a maximum 30 min after administration for all the active doses. Taken together, these results suggest that Preg-S interacts with the cortical cholinergic system, which may account, at least in part, for the promnesic and/or antiamnesic properties of this neurosteroid.  相似文献   

13.
Microdialysis probes were inserted bilaterally into the striatum of 7-day-old rat pups (n = 30) to examine extracellular fluid levels of dopamine, its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). The dialysis samples were assayed by HPLC with electrochemical detection. Baseline levels, measured after a 2-h stabilization period, were as follows: dopamine, not detected; DOPAC, 617 +/- 33 fmol/min; HVA, 974 +/- 42 fmol/min; and 5-HIAA, 276 +/- 15 fmol/min. After a 40-min baseline sampling period, 12 animals were exposed to 8% oxygen for 120 min. Hypoxia produced marked reductions in the striatal extracellular fluid levels of both dopamine metabolites (p less than 0.001 by analysis of variance) and a more gradual and less prominent reduction in 5-HIAA levels (p less than 0.02 by analysis of variance), compared with controls (n = 12) sampled in room air. In the first hour after hypoxia, DOPAC and HVA levels rose quickly, whereas 5-HIAA levels remained suppressed. The magnitude of depolarization-evoked release of dopamine (elicited by infusion of potassium or veratrine through the microdialysis probes for 20 min) was evaluated in control and hypoxic animals. Depolarization-evoked dopamine efflux was considerably higher in hypoxic pups than in controls: hypoxic (n = 7), 257 +/- 32 fmol/min; control (n = 12), 75 +/- 14 fmol/min (p less than 0.001 by analysis of variance). These data demonstrate that a brief exposure to moderate hypoxia markedly disrupts striatal catecholamine metabolism in the immature rodent brain.  相似文献   

14.
Monoamine oxidase (MAO) type A and type B were measured using kynuramine, 3,4-dihydroxyphenylethylamine (dopamine, DA), and 5-hydroxytryptamine (5-HT, serotonin) in 20 brain areas. The highest activities were found in the striatum (caudate nucleus, putamen, globus pallidus, and substantia nigra), hypothalamus, and c-mammilare. The ratio of DA to 5-HT deamination varied in the different regions, being in favor of DA in the striatum. With kynuramine as the substrate IC50 values of a number of inhibitors indicated that l-deprenyl was far more potent an inhibitor of human brain MAO than clorgyline or harmaline. N-Desmethylpropargylindane hydrochloride (AGN 1135) was also shown to have MAO-B inhibitory selectivity similar to that of l-deprenyl. Brains obtained at autopsy from l-deprenyl-treated Parkinsonian patients showed that, whereas MAO-B was fully inhibited by the therapeutic doses of l-deprenyl, substantial MAO-A activity was still evident. These results are matched by the significant increases of DA noted in caudate nucleus, globus pallidus, putamen, and substantia nigra and the unaltered 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the same regions. These data indicate that the therapeutic actions of l-deprenyl may lie in its selective inhibition of MAO-B resulting in increased brain levels of DA formed from L-dihydroxyphenylacetic acid (L-DOPA).  相似文献   

15.
Abstract: Microdialysis was used to compare the effect of local perfusion of cocaine with that of functionally similar compounds on extracellular norepinephrine, dopamine, and serotonin (measured simultaneously) in the ventral tegmental area of freely moving rats. Tetrodotoxin (1 µ M ) potently inhibited both basal and cocaine-induced dialysate monoamine outputs. The local anesthetic lidocaine produced little or no effect on the monoamine output, whereas all uptake blockers tested (at 0.1–1,000 µ M ) increased the monoamine output in a dose-dependent manner. The selective norepinephrine-uptake blockers desipramine and nisoxetine did not show any selectivity for norepinephrine, whereas the selective serotonin-uptake blockers fluoxetine and citalopram, as well as the selective dopamine-uptake blocker GBR 12935, preferentially (but not exclusively) increased their target amine. Cocaine at low concentrations (1–10 µ M ) increased the three amines similarly, but at higher concentrations (100–1,000 µ M ) caused a relatively higher dopamine output. A positive relationship between blocker-induced dialysate norepinephrine and dopamine outputs suggests significant interactions between monoamine systems. The present results indicate that cocaine's action in the ventral tegmental area involves not only a dopamine-, but also a norepinephrine- and a serotonin-related component, and that cocaine-induced monoamine increase is independent of its local anesthetic property.  相似文献   

16.
The relationship between brain extracellular glucose levels and neuronal activity was evaluated using microdialysis in awake, freely moving rats. The sodium channel blocker tetrodotoxin and the depolarizing agent veratridine were administered through the dialysis probe to provoke local changes in neuronal activity. The extracellular glucose content was significantly increased in the presence of tetrodotoxin and decreased sharply following veratridine application. The systemic injection of a general anaesthetic, chloral hydrate, led to a large and prolonged increase in extracellular glucose levels. The brain extracellular glucose concentration was estimated by comparing dialysate glucose efflux over a range of inlet glucose concentrations. A mean value of 0.47 mM was obtained in five animals. The results are discussed in terms of the coupling between brain glucose supply and metabolism. The changes observed in extracellular glucose levels under various conditions suggest that supply and utilization may be less tightly linked in the awake rat than has previously been postulated.  相似文献   

17.
In vivo microdialysis in the frontal cortex of the freely moving guinea-pig was used to measure extracellular 5-hydroxytryptamine (5-HT) and study terminal autoreceptor control of its release. The indoleamine levels were determined by HPLC with electrochemical detection. Release of extracellular 5-HT and, to a lesser extent, 5-hydroxyindoleacetic acid was sensitive to tetrodotoxin, confirming the neuronal origin of measured neurotransmitter levels. Both systemic and local administration of the 5-HT1 agonist 5-carboxamidotryptamine caused inhibition of extracellular 5-HT levels, confirming the regulatory role of the terminal, and possibly also the somatodendritic, 5-HT autoreceptor on neuronal 5-HT release. Levels of extracellular 5-hydroxyindoleacetic acid were not affected by 5-carboxamidotryptamine following either central or peripheral administration.  相似文献   

18.
5-Hydroxytryptamine (5-HT) turnover and dopamine (DA) turnover values were obtained in individual conscious rats by measuring the rates of accumulation of 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in cisternal CSF samples taken from each rat at 0, 30, and 60 min after probenecid (200 mg/kg i.p.) administration. In a separate experiment, 5-HT and DA turnover values were determined in CSF, striatum, and rest of brain of groups of rats killed 0, 30, or 60 min after probenecid. Whole brain turnover values were calculated from striatal and rest of brain values. Mean turnover values using CSF were comparable with both procedures. DA turnover values were greater when based on total (i.e., free + conjugated) DA metabolites than when based on free metabolites. After partial inhibition of monoamine synthesis with the decarboxylase inhibitor DL-alpha- monofluoromethyl -DOPA ( MFMD , 100 mg/kg p.o.) DA and 5-HT turnover values were comparably reduced in whole brain, rest of brain, and CSF but more markedly reduced in the striatum. Mean DA and 5-HT turnover values obtained using CSF were similar with probenecid doses over the range 150-250 mg/kg i.p. but were variable when repeatedly determined in the same rats after administration of 200 mg/kg probenecid. Results in general show that the CSF procedure may be used to determine concurrently both 5-HT and DA turnover (when estimated from the sum of total but not free metabolites) and that it provides a good index of whole brain turnover of these transmitters in the conscious individual rat.  相似文献   

19.
Abstract: Release of endogenous serotonin [5-hydroxy-tryptamine (5-HT)] in the cerebellum of awake rats was characterized using in vivo microdialysis. 5-HT output was increased (∼70%) by local application of KCl (100 m M ) and was reduced (∼60%) by both tetrodotoxin (0.5 µ M ) and omission of Ca2+ from the perfusion fluid. 5-HT release was decreased (∼70%) by the selective 5-HT1A agonist 8-hydroxy-2-(di- n -propylamino)tetralin (0.25 mg/kg, s.c.), and this effect was rapidly reversed by a selective 5-HT1A antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane-carboxamide trihydrochloride (WAY-100635; 0.1 mg/kg, i.p.). These results indicate that a large portion of the measurable 5-HT output in the cerebellum is of neuronal origin, is dependent on impulse flow, and is sensitive to 5-HT1A autoreceptor activation. Further studies examined the relationship between 5-HT levels and general activity of the animals across the light-dark transition and during behavioral manipulations. Both 5-HT levels and behavioral activity were significantly elevated during the dark period, with changes in 5-HT efflux closely paralleling changes in activity. Similar increases (∼40%) in 5-HT output were observed during both feeding and feeding in the presence of a stressor (tail pinch). These findings suggest that behavioral state is an important factor determining neuronal 5-HT release in cerebellum under physiological conditions.  相似文献   

20.
Nakajima  Wako  Ishida  Akira  Ogasawara  Maya  Takada  Goro 《Neurochemical research》1998,23(9):1159-1165
Effects of N-methyl-D-aspartate (NMDA) and potassium on 5-day-old rat's brain were examined. We measured extracellular striatal monoamines such as dopamine (DA), 3,4 dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) using intracerebral microdialysis. After 3 h stabilization, pups received varying concentrations of NMDA (1–3 mM) and potassium (200–800 mM) by intrastriatal perfusion for 32 minutes. Increasing the concentration of NMDA and potassium induced a dose related DA increase (p < 0.001), whereas DOPAC, HVA, and 5-HIAA decreased significantly. Five days later the same animals were sacrificed and the weight reduction of their cerebral hemispheres was measured. The weight of the drug perfused side was significantly reduced compared with that of the contralateral one. We examined next the relationship between the level of maximum DA and the relative hemisphere weight reduction. The DA peak was highly correlated with the hemisphere weight reduction (r = 0.70, n = 52, p < 0.001 in the NMDA group, r = 0.83, n = 30, p < 0.001 in the potassium group, respectively). These data show that each treatment alter striatal monoamine metabolism in immature rat brain and that the extracellular DA peak is a potential early indicator to estimate brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号