首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantification of yeast flocculation under defined conditions will help to understand the physical mechanisms of the flocculation process used in beer fermentation. Flocculation was quantified by measuring the size of yeast flocs and the number of single cells. For this purpose, a method to measure floc size and number of single cells in situ was developed. In this way, it was possible to quantify the actual flocculation during fermentation, without influencing flocculation. The effects of three physical parameters, floc strength, fluid shear, and yeast cell concentration, on flocculation during beer fermentation, were examined. Increasing floc strength results in larger flocs and lower numbers of single cells. If the fluid shear is increased, the size of the flocs decreases, and the number of single cells remains constant at approximately 10% of the total cells present. The cell concentration also influences flocculation, a reduction of 50% in cell concentration leads to a decrease of about 25% in floc size. The number of single cells decreases in linear proportion to the cell concentration. This means that, during yeast settling at full scale, the number of single cells decreases. The results of this study are used in a model for yeast flocculation. With respect to full scale fermentation the effect of cell concentration will play an important role, for flocculation and sedimentation will occur simultaneously leading to a quasi steady state between these phenomena. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 190-200, 1997.  相似文献   

2.
A new technique is outlined for the rapid settling of yeast cells in fermentation media. The technique involved the addition of dense, inert particles (nickel powder) to a yeast suspension (Saccharomyces cerevisiae) at pH 4.5 and a rapid change of pH to 8.0-9.0. When the pH was changed large flocs formed immediately and settled rapidly, leaving a clear supernatant. On returning the pH to 4.5 the flocs were destroyed. This technique gave larger flocs and higher settling rates than the constant pH method, and much lower nickel/yeast ratios were required. Good flocculation also occurred in a fermentation medium. The technique was used to recycle yeast cells to a semicontinuous ethanol fermentation. Application of the technique to this and similar systems is discussed. The factors affecting yeast/inert powder flocculation are also discussed and a model is proposed to explain the observed experimental behavior for flocculation with a rapid change in pH.  相似文献   

3.
New concepts for rapid yeast settling. I. Flocculation with an inert powder   总被引:1,自引:0,他引:1  
A novel technique for settling microorganisms has been described. The technique involves adding a dense, inert powder to a suspension of microorganisms under conditions where flocculation of the microorganism with the inert poweder occurs. The flocs formed are small and relatively dense and settle rapidly. Suspensions of Saccharomyces cerevisiae yeast have been flocculated with several different inert seed materials achieving rapid settling and separations of up to 99.9%. Nickel powder was used as a seed material for most experiments described here, and iron sand showed promise as a cheaper seed for large-scale use. The degree of flocculation and cell separation obtained depended largely on the seed concentration and the components in solution. Temperature and pH had little effect. When the method was initially applied to a practical fermentation, flocculation was poor because of inhibiting compounds in the fermentation medium, but modification of the technique produced good flocculation in the medium.  相似文献   

4.
The ability of yeast to flocculate is important in different separation processes, especially in the beer industry. Because of the regulation purposes, there is a need for online monitoring. With the presented measuring set-up, consisting of a peristaltic pump, a photometer, and a computer, it is possible to determine the onset of flocculation as well as to follow flocculation intensity and the concentration of nonflocculated cells. It was found that for the yeast strain Saccharomyces cerevisiae ZIM 198 the decrease of nonflocculated cells (after flocculation has occurred) during the exponential growth can be described by an exponential equation for the first-order process, whereas the increase of free cells due to dispersion of the flocs during the stationary phase follows the form of the growth curve. It was also demonstrated that the absorbency profiles of yeast sedimentation can be described by the second-order equation suggested by Stradford and Keenan for the decrease of cell concentration during sedimentation. (c) 1997 John Wiley & Sons, Inc.  相似文献   

5.
Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

6.
Initiation of flocculation ability of Saccharomyces cerevisiae MPY1 cells was observed at the moment the cells stop dividing because of nitrogen limitation. A shift in concentration of the limiting nutrient resulted in a corresponding shift in cell division and initiation of flocculence. Other limitations also led to initiation of flocculence, with magnesium limitation as the exception. Magnesium-limited S. cerevisiae cells did not flocculate at any stage of growth. Cell surface hydrophobicity was found to be strongly correlated with the ability of the yeast cells to flocculate. Hydrophobicity sharply increased at the end of the logarithmic growth phase, shortly before initiation of flocculation ability. Treatments of cells which resulted in a decrease in hydrophobicity also yielded a decrease in flocculation ability. Similarly, the presence of polycations increased both hydrophobicity and the ability to flocculate. Magnesium-limited cells were found to be strongly affected in cell surface hydrophobicity. A proteinaceous cell surface factor(s) was identified as a flocculin. This heat-stable component had a strong emulsifying activity, and appears to be involved in both cell surface hydrophobicity and in flocculation ability of the yeast cells.  相似文献   

7.
Summary A novel technique for the rapid settling of yeast cells is outlined. An inert, high density powder is added to a yeast suspension and the pH of the suspension is switched rapidly from 4.5 (fermentation pH) to 8.0. Large, rapid settling flocs of yeast are formed immediately. This technique has been applied to the recycling of yeast from an ethanolic fermentation.  相似文献   

8.
Initiation of flocculation ability of Saccharomyces cerevisiae MPY1 cells was observed at the moment the cells stop dividing because of nitrogen limitation. A shift in concentration of the limiting nutrient resulted in a corresponding shift in cell division and initiation of flocculence. Other limitations also led to initiation of flocculence, with magnesium limitation as the exception. Magnesium-limited S. cerevisiae cells did not flocculate at any stage of growth. Cell surface hydrophobicity was found to be strongly correlated with the ability of the yeast cells to flocculate. Hydrophobicity sharply increased at the end of the logarithmic growth phase, shortly before initiation of flocculation ability. Treatments of cells which resulted in a decrease in hydrophobicity also yielded a decrease in flocculation ability. Similarly, the presence of polycations increased both hydrophobicity and the ability to flocculate. Magnesium-limited cells were found to be strongly affected in cell surface hydrophobicity. A proteinaceous cell surface factor(s) was identified as a flocculin. This heat-stable component had a strong emulsifying activity, and appears to be involved in both cell surface hydrophobicity and in flocculation ability of the yeast cells.  相似文献   

9.
Brewer’s yeast appears to flocculate or disperse reversibly in response to the environmental conditions. The yeast and its solubilized cell surface substance show flocculation-dispersion changes according to pH, sugar concentration and flocculation inducing substances. Top fermentative yeasts do not show such a response to the surrounding conditions. Cell surfaces of bottom fermentative yeasts increase in hydrophobicity during a shift from fermentation starting conditions (dispersion of yeast) (high sugar concentration, pH 5.5) to ending conditions ( flocculation) (no sugar, pH 4.2), but this hydrophobicity increase was not seen in the case of top fermentative yeast cells. The contributions of hydrophobic interaction and ionic bonds to flocculence of the yeast were discussed.  相似文献   

10.
The biological control of flocculation interactions by factors related to growth under different conditions of aeration was documented with a new assay for flocculence. The degree of flocculence expressed in a genetically defined Saccharomyces cerevisiae strain (FLO1/FLO1 ade1/ade1) remained constant during aerobic growth but varied with aeration. Flocculence was repressed in anaerobically growing cells but was induced in stationary cells or cells returned to aerobic growth. Repression was correlated with the selective inactivation of cell surface lectin-like components. The changes in flocculence were accompanied by changes in 16 extractable proteins separated by electrophoresis; however, a clear correlation between specific protein bands and flocculence could not be established. The study clearly demonstrated that the phenotypic expression of FLO1 could be reproducibly manipulated for experimental purposes by aeration alone.  相似文献   

11.
Summary The flocs produced by an autoflocculent strain of Zymomonas mobilis are easily disrupted by gentle agitation. Treatment of a disrupted cell suspension with the flocculant chitosan yields less easily disrupted floes. The effectiveness of chitosan is attributed to the hydrogen bonding of the flocculant with the cell-bound and free cellulosic materials which facilitate polymer bridging and an electrostatic interaction between the cell wall and the flocculant.  相似文献   

12.
Schizosaccharomyces pombe was cultivated in a medium of glucose (10 g/L) malt extract (3 g/L), yeast extract (3 g/L), and bactopeptone (5 g/L) to form flocs. More than 95% of the cell population were flocculated. Variation in glucose concentration (from 10 to 100 g/L) did not affect flocculation. Yeast extract helped induce flocculation. Application of the immobilized yeast for the continuous production of ethanol was tested in a column reactor. Soft yeast flocs (50-200 mesh) underwent morphological changes to heavy particles (0.1-0.3 cm diameter) after continuously being fed with fresh substrates in the column. Productivity as high as 87 g EtOH L(-1) h(-1) was obtained when a 150 g/L glucose medium was fed. The performance of this yeast reactor was stable over a two-month period. The ethanol yield was 97% of the theoretical maximum based upon glucose consumed.  相似文献   

13.
Flocculation of algae using chitosan   总被引:9,自引:0,他引:9  
Flocculation of three freshwater algae, Spirulina,Oscillatoria and Chlorella, and onebrackish alga, Synechocystis, using chitosan was studiedinthe pH range 4 to 9, and chlorophyll-a concentrations inthe range 80 to 800 mg m–3, which produces aturbidity of 10 to 100 nephelometric turbidity units (NTU) in water. Chitosanreduced the algal content effectively by flocculation and settling. Theflocculation efficiency is very sensitive to pH, and reached a maximum at pH7.0for the freshwater species, but lower for the marine species. The optimalchitosan concentration that is required to effect maximum flocculation dependedon the concentration of alga. Flocculation and settling were faster whenconcentrations of chitosan higher than optimal are used. The settled algalcellsare intact and live, but will not be redispersed by mechanical agitation. Thede-algated water may be reused to produce fresh cultures of algae.  相似文献   

14.
Lick  Wilbert  Lick  James  Ziegler  C. Kirk 《Hydrobiologia》1992,(1):1-16
Recent experimental and theoretical work on flocculation and settling speeds of flocs is reviewed. On the basis of this work, an accurate and computationally efficient model of the aggregation and disaggregation of fine-grained sediments is proposed. This model is then used to predict flocculation times and steady-state floc sizes for a wide range of environmental conditions. The predicted flocculation times are smaller, sometimes by as much as two orders of magnitude, than those predicted by mono-disperse theory. The model is also used to show that the disaggregation of flocs due to increased shear near the sediment-water interface may be a possible mechanism for the increased concentrations often observed near this interface.  相似文献   

15.
A trickle-bed system employing inert matrices of vermiculite or polyurethane foam packed in the downcomer section of a split-flow air-lift reactor has been developed for hybridoma culture to enhance antibody productivity. This quiescent condition favoured occlusion and allowed the cells to achieve densities twelve fold greater (12.8×106 cells/ml reactor for polyurethane foam) than in free cell suspension. The reactor was operated in a cyclic batch mode whereby defined volumes of medium were periodically withdrawn and replaced with equal volumes of fresh medium. The pH of the medium was used as the indicator of the feeding schedule. Glucose, lactate and ammonia concentrations reached a stationary value after 5 days. With vermiculite packing, a monoclonal antibody (MAb) concentration of 2.4 mg/l was achieved after 12 days. The MAb concentration declined then increased to a value of 1.8 mg/l. In the polyurethane foam average monoclonal antibody (MAb) concentrations reached a stationary value of 1.1 mg/l in the first 20 days and increased to a new stationary state value of 2.1 mg/l for the remainder of the production. MAb productivity in the trickle-bed reactor was 0.3 mg/l·d (polyurethane foam) and 0.18 mg/l.d (vermiculite) in comparison to 0.12 mg/l·d for free cell suspension. This trickle-bed system seems to be an attractive way of increasing MAb productivity in culture.  相似文献   

16.
A Comamonas testosteroni strain was isolated from activated sludge on the basis of its ability to coaggregate with yeast cells. On agar plates the following two types of colonies were formed: colonies with a mucoid appearance and colonies with a nonmucoid appearance. On plates this strain alternated between the two forms, making sectored colonies. In liquid medium with constant agitation no such change was observed. In the absence of agitation and in contact with a glass surface a culture with predominantly nonmucoid-colony-forming cells very rapidly shifted to a culture dominated by mucoid-colony-forming cells. In liquid medium the reverse was observed under stress conditions imposed by hydrogen peroxide, sodium dodecyl sulfate, or starvation. Nonmucoid cells formed very rapidly settling flocs with yeast cells, while coaggregation of mucoid cells with yeast cells did not occur. These findings may be relevant to the behavior of activated sludge microbial communities.  相似文献   

17.
Separation and cells concentration constitute important stages in most biotechnological processes. Particularly, use of flocculation/sedimentation can improve significantly the extraction of biopolymers accumulated by microorganisms and the biodegradation of xenobiotic compounds by cell sludge. In this work the use of tannin and aluminum sulphate (Al2(SO4)3) as flocculating agents for concentration of cells of Cupriavidus necator DSM 545 is evaluated. Cells were grown in broth nutrient medium in Erlenmeyer flasks, submitted to orbital agitation of 160 rpm at 30 °C for 21 h. The optimal concentrations of flocculating agents, as determined with a standard jar test method, were equal to 2,800 mg/L for tannin and 800 mg/L for Al2(SO4)3, allowing for recovery of 95% of the cells in both cases. Obtained flocs presented density and average diameter of 1.03 g/mL ± 0.01 g/mL and 158 μm ± 19 μm for tannin and of 1.05 g/mL ± 0.01 g/mL and 146 μm ± 14 μm for Al2(SO4)3, respectively. Batch settling tests were performed in order to determine the operational capacity of continuous settlers to be used for separation of the investigated flocculent suspensions. Finally, cultivation of cells using flocs as inoculum indicated that the cells remained viable after flocculation with usage of the optimum flocculating agent concentrations.  相似文献   

18.
Summary The strength of flocs formed by the chitosan induced flocculation of yeast depends on the nature of the suspending medium. The addition of anionic polymers to the medium prior to flocculation by the cationic polyelectrolyte chitosan can increase the resilience of the flocs.  相似文献   

19.
In a membrane bioreactor (MBR), fast growth of anammox bacteria was achieved with a sludge residence time (SRT) of 12 days. This relatively short SRT resulted in a--for anammox bacteria--unprecedented purity of the enrichment of 97.6%. The absence of a selective pressure for settling, and dedicated cultivation conditions led to growth in suspension as free cells and the complete absence of flocs or granules. Fast growth, low levels of calcium and magnesium, and possibly the presence of yeast extract and a low shear stress are critical for the obtainment of a completely suspended culture consisting of free anammox cells. During cultivation, a population shift was observed from Candidatus "Brocadia" to Candidatus "Kuenenia stuttgartiensis." It is hypothesized that the reason for this shift is the higher affinity for nitrite of "Kuenenia." The production of anammox bacteria in suspension with high purity and productivity makes the MBR a promising tool for the cultivation and study of anammox bacteria.  相似文献   

20.
Addition of starch to suspensions of Escherichia coli K-12 resulted in the formation of bacterial flocs. The flocculation was dependent on the high expression of a receptor for starch (maltoporin) on the surface of the bacterium. Factors influencing floc formation were investigated and optimal conditions for flocculation based on cell density, starch concentration, time, and pH established. As quantitated by a sedimentation assay, over 80% of bacteria in a culture could be removed by settling without centrifugation in 3 h under optimal conditions. Floc formation was evident with bacteria containing wild-type maltoporin but was faster and occurred to a greater extent with strains expressing a high-affinity allele (lamB1400) of the starch receptor. Bacteria could be harvested by floc formation directly in growth medium under defined conditions of maltoporin expression and medium composition. These results demonstrate the effectiveness of starch-dependent aggregation in the harvesting of cells, using an inexpensive, biologically acceptable agent to induce flocculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号