首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundFenugreek is known to have good anti-diabetes properties. Moreover, several studies accounted that the trivalent form of chromium [Cr(III)] also have anti-diabetic properties. However, its hexavalent form i.e., Cr(VI) is known to be highly toxic and carcinogenic to living beings and retarded plant growth even if it is present in low concentration in soil. Many plant growth-promoting rhizobacteria (PGPR) are reported to have the potential to reduce the Cr(VI) into Cr(III) in soil. In view of the above, the present objective was designed to effectively utilize Cr(VI) reducing PGPRs for the growth and development of fenugreek plant in Cr(VI) amended soil, apart from reducing Cr(VI) in soil and fortification of Cr(III) in the aerial part of plants.MethodsThe experiment was carried out to evaluate the effect of Cr(VI)-reducing PGPRs viz. Bacillus cereus (SUCR44); Microbacterium sp. (SUCR140); Bacillus thuringiensis (SUCR186) and B. subtilis (SUCR188) on growth, uptake and translocation of Cr as well as other physiological parameters in fenugreek grown under artificially Cr(VI) amended soil (100 mg kg−1 of Cr(VI) in soil).ResultsThe aforementioned concentration of Cr(VI) in soil cause severe reduction in root length (41 %), plant height (43 %), dry root (38 %) and herb biomass (48 %), when compared with control negative (CN; uninoculated plant not grown in Cr(VI) contaminated soil). However, the presence of Microbacterium sp.˗SURC140 (MB) mitigates the Cr toxicity resulting in improved root length (92 %), plant height (86 %), dry root (74 %) and herb biomass (99 %) as compared with control positive (CP; uninoculated plants grown in Cr(VI) contaminated soil). The maximum reduction in bioavailability (82 %) of Cr(VI) in soil and its uptake (50 %) by the plant were also observed in MB-treated plants. However, All Cr(VI)-reducing PGPRs failed to decrease the translocation of Cr to the aerial parts. Moreover, the plant treated with MB observed diminution in relative water content (13 %), electrolyte leakage (16%) and lipid peroxidation (38 %) as well as higher chlorophyll (37 %) carotenoids (17 %) contents and antioxidants (18%) potential.ConclusionThis study demonstrates that MB can lower the Cr(VI) toxicity to the plant by reducing the bioavailable Cr(VI), consequently reducing the Cr(VI) toxicity level in soil and helping in improving the growth and yield of fenugreek. Additionally, Cr(III) uptakes and translocation may improve the effectiveness of fenugreek in treating diabetes.  相似文献   

2.
Abstract

The present study investigates the influence of different Cr(III)-organic compounds [Cr(III)-citrate and Cr(III)-histidine] in growth-nonsupportive exposure medium on the uptake and localisation of chromium in the cell structure of the yeast Saccharomyces cerevisae. The amount of total accumulated chromium in yeast cells and the distribution of chromium between the yeast cell walls and spheroplasts were determined by atomic absorption spectroscopy. Chromium accumulation potential was shown to depend on treatment time, metal concentration as well as the nature of the bound ligand. Chromium uptake was characterised by a time-dependent increase of total chromium which suggests that the amount of cell-accumulated chromium also tended to increase over time. Cellular chromium accumulation (mg g?1 dry wt) of Cr(III)-histidine is higher than Cr(III)-citrate. The pH dependence pattern of chromium accumulation is similar for both of the Cr(III)-organic compounds: pH 6.5>pH 5>pH 8. Substantial differences were found between the two Cr(III)-organic compounds, in the total chromium accumulation as well as in the distribution in yeast cell walls and spheroplasts.  相似文献   

3.
Abstract

This study investigated the effect of two organic amendments (compost of cattle ruminai content and Sphagnum-moss peat) on the reduction of hexavalent chromium and the distribution of this metal among the main solid phases of a soil with low organic matter content treated with different levels of Cr(VI) (0–2000 mg Cr kg?1 soil). At the same level of added organic carbon, the peat reduced Cr(VI) added to the soil from 250 to 2000 mg kg?1, with 100% efficiency. The reduction efficiency of the compost, however, decreased with the increasing dose of Cr(VI) soil. The distribution of Cr between the different soil components was evaluated by a sequential chemical extraction procedure. The concentration of water-soluble and exchangeable Cr decreased with the addition of organic amendments to the soil, whereas Cr increased in the organic fraction. The effect of added organic material on the Cr absorption was examined with two ornamental plants (Melissa officinalis and Begonia semperflorens). The increased Cr(VI) in the soil increased the Cr concentration in plant tissues. The addition of organic matter produced a greater aerial biomass for each level of added Cr in comparison with unamended soil. Sphagnum moss peat was more effective than the compost to decrease the total Cr and the Cr(VI) concentration in the water-soluble and exchangeable fraction of soil, thereby reducing the Cr accumulation in plants tissues and phytotoxic symptoms.  相似文献   

4.
Trivalent chromium (Cr3+) is essential for animal and human health, whereas hexavalent Cr (CrO4 2−) is a potent carcinogen and extremely toxic to animals and humans. Thus, the accumulated Cr in food plants may represent potential health hazards to animals and humans if the element is accumulated in the hexavalent form or in high concentrations. This study was conducted to determine the extent to which various vegetable crops absorb and accumulate Cr3+ and CrO4 2− into roots and shoots and to ascertain the different chemical forms of Cr in these tissues. Two greenhouse hydroponic experiments were performed using a recirculating-nutrient culture technique that allowed all plants to be equally supplied with Cr at all times. In the first experiment, 1 mg L−1 Cr was supplied to 11 vegetable plant species as Cr3+ or CrO4 2−, and the accumulation of Cr in roots and shoots was compared. The crops tested included cabbage (Brassica oleracea L. var. capitata L.), cauliflower (Brassica oleracea L. var. botrytis L.), celery (Apium graveolens L. var. dulce (Mill.) Pers.), chive (Allium schoenoprasum L.), collard (Brassica oleracea L. var. acephala DC.), garden pea (Pisum sativum L.), kale (Brassica oleracea L. var. acephala DC.), lettuce (Lactuca sativa L.), onion (Allium cepa L.), spinach (Spinacia oleracea L.), and strawberry (Fragaria ×  ananassaDuch.). In the second experiment, X-ray absorption spectroscopy (XAS) analysis on Cr in plant tissues was performed in roots and shoots of various vegetable plants treated with CrO4 2− at either 2 mg Cr L−1 for 7 d or 10 mg Cr L−1 for 2, 4 or 7 d. The crops used in this experiment included beet (Beta vulgaris L. var. crassa (Alef.) J. Helm), broccoli (Brassica oleracea L. var. Italica Plenck), cantaloupe (Cucumis melo L. gp. Cantalupensis), cucumber (Cucumis sativus L.), lettuce, radish (Raphanus sativus L.), spinach, tomato (Lycopersicon lycopersicum (L.) Karsten), and turnip (Brassica rapa L. var. rapifera Bailey). The XAS speciation analysis indicates that CrO4 2− is converted in the root to Cr3+ by all plants tested. Translocation of both Cr forms from roots to shoots was extremely limited and accumulation of Cr by roots was 100-fold higher than that by shoots, regardless of the Cr species supplied. Highest Cr concentrations were detected in members of the Brassicaceae family such as cauliflower, kale, and cabbage. Based on our observations and previous findings by other researchers, a hypothesis for the differential accumulation and identical translocation patterns of the two Cr ions is proposed. Received: 27 February 1998 / Accepted: 2 April 1998  相似文献   

5.
Mesorhizobium strain RC3, isolated from chickpea nodules, tolerated chromium up to 500 μg/ml and reduced it by 90% at pH 7 after 120 h. It produced plant growth-promoting substances, both in the presence and absence of chromium. Strain RC3 produced 35 μg indole acetic acid/ml in Luria Bertani broth with 100 mg tryptophan/ml, which decreased with an increase in chromium concentration. Chromium application to soil at 136 mg/kg was toxic to chickpea plants but when RC3 at 136 mg/kg was also added, it increased the dry matter accumulation, number of nodules, seed yield and grain protein by 71, 86, 36 and 16%, respectively, compared to non-inoculated plants. Nitrogen in roots and shoots were increased by 46 and 40%, respectively, at 136 mg Cr/kg. The bio-inoculant decreased the uptake of chromium by 14, 34 and 29% in roots, shoots and grains, respectively.  相似文献   

6.
Abstract

The toxicity, mobility and bioavailability of Cr, a versatile industrial metal and a contaminant, depends on its chemical form, viz: Cr(lll) and Cr(VI). It may enter humans through plants grown on contaminated soil or irrigated by contaminated water. The phytoavailability and transfer through agricultural food chains requires an understanding of mechanisms of Cr uptake and translocation by plants. Xylem sap transports both nutrient and non-nutrient ions after absorption by roots to aerial parts of the plant. lt transports cations by complexation with organic ligands. Trivalent chromium, though prone to hydrolysis, also complexes O donor ligands. The chemical form in which Cr(lll) is transported by xylem sap was investigated. ln vitro studies were performed by mixing the xylem sap of maize plants at three stages of plant growth with radiotagged Cr(III). The speciation change was investigated after 10 days and 30 days by anion and cation exchange elution chromatography. The elution curves were compared with those of pure Cr(III) and Cr(III) complexes of different synthetic acids. Complexation of Cr(III) with ligands of xylem sap especially with carboxylates was evident. Cationic Cr(III) was vitally being transported as anionic organic complex species. The major species seemed to be that of Cr(III)-citrate. Citric acid was the major complexing acid of xylem sap as determined by HPLC. These mobile and soluble complexes may get immobilized and stored in leaves and other edible plant parts. This may also be a mechanism used by plants for detoxification of toxic Cr(VI) which may become reduced and then complexed.  相似文献   

7.
Four Cr(VI)-reducing bacterial strains (Ochrobactrum intermedium, CrT-2, CrT-3 and CrT-4) previously isolated from chromium-contaminated sites were inoculated on to seeds of sunflower (Helianthus annuus var SF-187), which were germinated and grown along with non-inoculated controls with chromate salts (300 μg CrCl3 or K2CrO4 ml−1). Severe reduction (20%) in seed germination was observed in Cr(VI) stress. Plant height decreased (36%) with Cr(VI) when compared with chromium-free control, while O. intermedium inoculation resulted a 20% increment in this parameter as compared to non-inoculated chromium-free control. CrT-3 inoculation resulted a 69% increment in auxin content as compared to non-inoculated control. O. intermedium caused 30% decrease in chromium uptake in sunflower plant roots under Cr(VI) stress as compared to chromium-free control plants.  相似文献   

8.
Effects of picolinic acid (2-pyridinecarboxylic acid) and chromium(III) picolinate was studied on the chromium (Cr) accumulation of fodder radish (Raphanus sativus L. convar. oleiformis Pers., cv. Leveles olajretek) and komatsuna (Brassica campestris L. subsp. napus f. et Thoms. var. komatsuna Makino, cv. Kuromaru ) grown in a pot experiment. Control cultures, grown in an uncontaminated soil (UCS; humous sand with pHKCl 7.48, sand texture with 12.4% clay+silt content, organic carbon 0.56%, CaCO3 2.2%, CEC 6.2 cmolc kg–1, Cr 10.6 mg kg–1), accumulated low amounts of chromium (less than 5.4 g g–1) in their roots or shoots. When this UCS was artificially contaminated with 100 mg kg–1 Cr (CrCl3) later picolinic acid treatment promoted the translocation of chromium into the shoots of both species. In fodder radish shoots Cr concentration reached 30.4 g g–1 and in komatsuna shoots 44.5 g g–1. Application of ethylene diamine tetra-acetic acid (EDTA) to this Cr contaminated soil had similar effect to picolinic acid. When the UCS was amended with leather factory sewage sediment (which resulted in 853 mg kg–1 Cr in soil), Cr mobilization was observed only after repeated soil picolinic acid applications. From a galvanic mud contaminated soil (brown forest soil with pHKCl 6.77, loamy sand texture with 26.6% clay+silt content, organic carbon 1.23%, CaCO3 0.7%, CEC 24.5 cmolc kg–1, Cd 5.0 mg kg–1, Cr 135 mg kg–1, and Zn 360 mg kg–1) the rate of Cr mobilization was negligible, only a slight increase was observed in Cr concentration of fodder radish shoots after repeated picolinic acid treatments of soil. Presumably picolinic acid forms a water soluble complex (chromium(III) picolinate) with Cr in the soil, which promotes translocation of this element (and also Cu) into the shoots of plants. The rate of complex formation may be related to the binding forms and/or concentration of Cr in soil and also to soil characteristics (i.e. pH, CEC), since the rate of Cr translocation was the following: artificially contaminated soil > leather factory sewage sediment amended soil > galvanic mud contaminated soil. Four times repeated 10 mg kg–1 chromium(III) picolinate application to UCS multiplied the transport of chromium to shoots, as compared to single 10 mg kg–1 CrCl3 treatment. This also suggests that chromium(III) picolinate is forming in the picolinic acid treated Cr-contaminated soils, and plants more readily accumulates and translocates organically bound Cr than ionic Cr. Picolinic acid promotes Cr translocation in soil-plant system. This could be useful in phytoextraction (phytoremediation) of Cr contaminated soils or in the production of Cr enriched foodstuffs.  相似文献   

9.
Stevens  D. P.  McLaughlin  M. J.  Randall  P. J.  Keerthisinghe  G. 《Plant and Soil》2000,227(1-2):223-233
Recent findings have highlighted the possibility of increased fluoride (F) concentrations in herbage through F taken up from soil via the plant root. This paper aimed to assess the risk of F concentrations reaching phytotoxic or zootoxic concentrations in pasture plants. Five plant species commonly found in improved pastures in Australia, the sown species subterranean clover (Trifolium subterranean) and cocksfoot (Dactylis glomerata), and weeds barley grass (Hordeum leporinum), scotch thistle (Onopordum acanthium) and sorrel (Rumex acetosella) were grown in complete nutrient solutions with graded levels of added F to determine the effects of F activity in solution on phytotoxicity and uptake of F by their roots. A model was developed using data from these solution culture experiments and data from the literature. The model assessed uptake of F by plants grown over a range of soil pH values and determined the risk of F taken up through the plant roots reaching phytotoxic concentrations, or concentrations potentially injurious to grazing animals, in the plant shoots. Modelling data suggested that the plants studied would not accumulate phytotoxic concentrations of F in shoots or concentrations of F deleterious to grazing animals through root uptake in neutral pH agricultural soils. The risks from F addition to soils in phosphatic fertilisers leading to reduction in pasture growth or animal health are therefore low. However, in highly F-polluted soil, as the soil becomes more acidic or alkaline, the risk of zootoxic concentrations of F in shoots of plants would increase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Hexavalent chromium is a contaminant highly mobile in the environment that is toxic for plants at low concentrations. In this work, the physiological response of Convolvulus arvensis and Medicago truncatula plants to Cr(VI) treatments was compared. C. arvensis is a potential Cr hyperaccumulator well adapted to semiarid conditions that biotransform Cr(VI) to the less toxic Cr(III). M. truncatula is a model plant well adapted to semiarid conditions with a well studied genetic response to heavy metal stress. The results demonstrated that C. arvensis is more tolerant to Cr toxicity and has a higher Cr translocation to the leaves. The inductively coupled plasma optical emission spectroscopy results showed that C. arvensis plants treated with 10 mg Cr(VI) L–1 accumulated 1512, 210, and 131 mg Cr kg–1 in roots, stems, and leaves, respectively. While M. truncatula plants treated with the same Cr(VI) concentration accumulated 1081, 331, and 44 (mg Cr kg–1) in roots, stems, and leaves, respectively. Enzymatic assays demonstrated that Cr(VI) decreased ascorbate peroxidase activity and increased catalase activity in M. truncatula, while an opposite response was found in C. arvensis. The x-ray absorption spectroscopy studies showed that both plant species reduced Cr(VI) to the less toxic Cr(III).  相似文献   

11.
Chromium(VI) resistant Chinese hamster ovary (CHO) cell lines were established in this study by exposing parental CHO-K1 cells to sequential increases in CrO3 concentration. The final concentration of CrO3 used for selection was 7 μM for Cr7 and 16 μM for Cr16 cells. Cr16-1 was a subclone derived from Cr16 cells. Next, these resistant cells were cultured in media without CrO3 for more than 6 months. The resistance of these cells to CrO3 was determined by colony-forming ability following a 24-h treatment. The LD50 of CrO3 for chromium(VI) resistant cells was at least 25-fold higher than that of the parental cells. The cellular growth rate, chromosome number, and the hprt mutation frequency of these chromium(VI) resistant cells were quite similar to their parental cells. The glutathione level, glutathione S-transferase, catalase activity, and metallothionine mRNA level in Cr7 and Cr16-1 cells were not significantly different from their parental cells. Furthermore, Cr16-1 cells were as sensitive as CHO-K1 cells to free-radical generating agents, including hydrogen peroxide, nickel chloride, and methanesulfonate methyl ester, and emetine, i.e., a protein synthesis inhibitor. The uptake of chromium(VI) and the remaining amount of this metal in these resistant and the parental cell lines were assayed by atomic absorption spectrophotometry. Experimental results indicated that a vastly smaller amount of CrO3 entered the resistant cell lines than their parental cells did. A comparison was made of the sulfate uptake abilities of CHO-K1 and chromium(VI) resistant cell lines. These results revealed that the uptake of sulfate anion was substantially reduced in Cr7 and Cr16-1 cells. Extracellular chloride reduced sulfate uptake in CHO-K1 but not in Cr16-1 cells. Therefore, the major causative for chromium(VI) resistance in these resistant cells could possibly be due to the defects in SO42-/C1? transport system for uptake chromium(VI).  相似文献   

12.
Srivastava  Sonal  Prakash  Satya  Srivastava  M. M. 《Plant and Soil》1999,212(2):201-206
Pot experiments were conducted to investigate the effect of various organic acids (carboxylic and amino acids) on the uptake and translocation of root-absorbed trivalent chromium by tomato ( Lycopersicum esculentum) plants grown in sand and soil culture. Statistically significant increases in chromium accumulation from Cr(III) treated plants in the presence of increasing concentrations of organic acid suggest the existence of Cr(III) — organic acid interactions in the soil-plant system. However, the amino acids have been less effective in the mobilization of chromium compared to carboxylic acids. The results are discussed on the basis of the potential of organic acids to form complexes with Cr(III). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Abstract

Phytoremediation is an important technique to remove heavy metals from contaminated soils due to its efficiency and cost-effectiveness. The present study was conducted to assess the synergistic role of 5-aminolevulinic acid (ALA) and citric acid (CA) in improving the phyto-extraction of chromium (Cr) by sunflower. Sunflower plants were grown in soil, spiked with different concentrations of Cr (0, 5, 10, 20?mg kg?1). Various concentrations of 5-ALA (0, 10, 20?mg L?1) and CA (0, 2.5, 5?mM) were applied exogenously at juvenile stage. A significant decrease was observed in biomass and agronomic traits of sunflower under Cr stress alone. Further, Cr toxicity significantly decreased the plant growth, soluble proteins and photosynthetic pigments. However, exogenously applied ALA and CA significantly improved the plants’ physiological as well as agronomic attributes by lowering the production of reactive oxygen species and reducing electrolyte leakage. Moreover, Cr uptake was increased with increasing concentration of Cr in spiked soil, which was further enhanced by combined application of ALA and CA.  相似文献   

14.
Summary Vesicular-arbuscular mycorrhizal fungi (VAM) are known to increase plant growth in saline soils. Previous studies, however, have not distinguished whether this growth response is due to enhanced P uptake or a direct mechanism of increased plant salt tolerance by VAM. In a glasshouse experiment onions (Allium cepa L.) were grown in sterilized, low-P sandy loam soil amended with 0, 0.8, 1.6 mmol P kg–1 soil with and without mycorrhizal inoculum. Pots were irrigated with saline waters having conductivities of 1.0, 2.8, 4.3, and 5.9 dS m–1. Onion colonized withGlomus deserticola (Trappe, Bloss, and Menge) increased growth from 394% to 100% over non-inoculated control plants when soil P was low ( 0.2 mmol kg–1 NaHCO3-extractable P) at soil saturation extract salinities from 1.1 dS m–1 to 8.8 dS m–1. When 0.8 and 1.6 mM P was added no dry weight differences due to VAM were observed, however, K and P concentrations were higher in VAM plants in saline treatments.Glomus fasciculatum (Gerdeman and Trappe) andGlomus mosseae (Nicol. and Gerd.) isolates increased growth of VAM tomato 44% to 193% in non-sterilized, saline soil (10 dS m–1 saturation extract) despite having little effect on growth in less saline conditions when soil P was low. Higher tomato water potentials, along with improved K nutrition by VAM in onion, indicate mechanisms other than increased P nutrition may be important for VAM plants growing under saline stress. These effects appear to be secondary to the effects of VAM on P uptake.  相似文献   

15.
Paasikallio  A. 《Plant and Soil》1999,206(2):213-222
Biotite is a potassium rich mineral, which is used as a fertilizer in organic farming and as a soil amendment in conventional farming. Its ability to reduce 134Cs uptake by ryegrass from peat soil was studied in pot experiments and compared with zeolite, heavy clay, bentonite and apatite. In addition, the long-term effect of biotite on 137Cs uptake from peat soil was studied in the peat field. In the pot experiments in the first cut of ryegrass, the minerals decreased 134Cs uptake by plants in the following order: zeolite > heavy clay > bentonite > biotite > apatite. Apatite did not have any effect on the plant 134Cs level. In the later cuts, the uptake of 134Cs from biotite-treated soil decreased further while that from soils treated with other minerals remained unchanged or even increased. In general, 134Cs uptake by plants decreased with increasing mineral level. The decrease of 134Cs uptake became more efficient, especially at the early growth stage, by mixing small amounts of zeolite in biotite. The results of the field experiment indicated the long-term effect of biotite on reducing 134Cs uptake by plants. Biotite application rate was 30 t ha-1. The five-year mean of the plant/soil concentration ratio of 137Cs was 0.05 for biotite-treated soil, in contrast to 0.14 for the control soil. On the whole, biotite reduced considerably the 137Cs level of plants on peat soil and this effect was long-lasting. For an effective reduction of plant radiocesium a great quantity of biotite is needed and therefore it is most suitable for greenhouse cultivation where contaminated slightly decomposed peat is used as a growing medium.  相似文献   

16.
Photosynthetic Euglena gracilis grown with different K2CrO4 concentrations was analyzed for its ability to take up, retain and reduce Cr(VI). For comparison, cells were also exposed to CrCl3. Cellular Cr(VI) uptake at pH 7.2 showed a hyperbolic saturation pattern with K m of 1.1 mM, V m of 16 nmol (h × 107 cells)−1, and K i sulfate of 0.4 mM. Kinetic parameters for sulfate uptake were similar, K m = 0.83 mM, V m = 15.9 nmol (h × 107cells)−1 and K i chromate = 0.3 mM. The capacity to accumulate chromium depended on the ionic species, external concentration and pH of the incubation medium. Cr(VI) or Cr(III) accumulation was negligible in the acidic (pH 3.5) culture medium, in which Cr(VI) was abiotically reduced to Cr(III). At pH 7.2 Cr(VI) was fully stable and high accumulation (>170 nmol/1 × 107 cells at 1 mM K2CrO4) was achieved; surprisingly, Cr(III) accumulation was also significant (>35 nmol/1 × 107 cells at 1 mM CrCl3). Cr(VI) was reduced by cells at pH 7.2, suggesting the presence of an external reductive activity. Cr(VI) induced an increased cysteine and glutathione content, but not in phytochelatins suggesting that chromium accumulation was mediated by monothiol compounds.  相似文献   

17.
Field survey, hydroponic culture, and pot experiments were carried out to examine and characterize cadmium (Cd) and zinc (Zn) uptake and accumulation by Sedum jinianum, a plant species native to China. Shoot Cd and Zn concentrations in S. jinianum growing on a lead/Zn mine area reached 103–478 and 4165–8349 mg kg?1 (DM), respectively. The shoot Cd concentration increased with the increasing Cd supply, peaking at 5083 mg kg?1 (DM) when grown in nutrient at a concentration of 100 μmol L?1 for 32 d, and decreased as the solution concentration increased from 200 to 400 μmol L?1. The shoot-to-root ratio of plant Cd concentrations was > 1 when grown in solution Cd concentrations ≤ 200 μmol L?1. Foliar, stem, and root Zn concentrations increased linearly with the increasing Zn level from 1 to 9600 μmol L?1. The Zn concentrations in various plant parts decreased in the order roots > stem > leaves, with maximum concentrations of 19.3, 33.8, and 46.1 g kg?1 (DM), respectively, when plants were grown at 9600 μmol Zn L?1 for 32 d. Shoot Cd concentrations reached 16.4 and 79.8 mg kg?1 (DM) when plants were grown in the pots of soil with Cd levels of 2.4 mg kg?1 and 9.2 mg kg?1, respectively. At soil Zn levels of 619 and 4082 mg kg?1, shoot Zn concentrations reached 1560 and 15,558 mg kg?1 (DM), respectively. The results indicate that S. jinianum is a Cd hyperaccumulator with a high capacity to accumulate Zn in the shoots.  相似文献   

18.
Abstract

Chemical fractions of soil Zn namely: water soluble (WS), exchangeable (EX), Pb displaceable (Pb-disp.), acid soluble (AS), Mn oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline Fe oxide occluded (CFeOX), residual (RES) were determined in 20 surface (0–15 cm) samples of acidic soils from the provinces of Uttarakhand and Uttar Pradesh, India. The chemical fractions of soil Zn in acidic soils were found to be in the following descending order of Zn concentration: RES > CFeOX > Pb-Disp. > AFeOX > MnOX > AS > OB > EX > WS. These soil samples were also extracted by: DTPA (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich 3 (pH 2.0), Modified Olsen, 0.01 N CaCl2, 1 M MgCl 2 and ion exchange resins. Chemical fractions and the soil extractable content of Zn estimated by different soil extractants were significantly correlated with some general soil properties. Maize (cv. Pragati) plants were grown in these soils for 35 days after emergence and Zn uptake by plants was compared with the amount of Zn extracted by different soil extractants and chemical fractions of Zn. Among chemical fractions of soil Zn, Pb-displaceable and acid soluble chemical fractions of soil Zn showed a significant and positive correlation with Zn uptake by maize. Path coefficient analysis also revealed that the acid soluble Zn fraction showed the highest positive and direct effect on Zn uptake (P=0.960). Among different multinutrient soil extractants evaluated for their suitability to assess Zn availability in acidic soils, DTPA (pH=5.3) was most suitable soil extractant, as the quantity of soil Zn extracted by this extractant showed a significant and positive correlation with the dry matter yield, Zn concentration and uptake by maize plants.  相似文献   

19.
Metal-organic acid interactions with special reference to their plant availability have been studied. The role of organic acids in the mobilization of Cr by converting it into labile organically bound form, enhancing its availability, is highlighted. Pot experiments are conducted to investigate the effect of various organic acids on the uptake and translocation of root absorbed trivalent and hexavalent chromium by maize (z. mays) plants grown in sand and soil culture. Statistically significant increases in chromium accumulation from CrIII-treated plants in the presence of increasing concentrations of organic acid suggest the existence of CrIII – organic acid interactions in the soil plant system. In order to support the above mentioned hypothesis of formation of organically bound CrIII in the presence of various organic acids (carboxylic and amino acids), separate experiments have been performed to synthesize and estimate its respective organically bound forms. Amendments with organic acids, however, do not appear to markedly affect chromium accumulation from CrVI treatment. The results are discussed on the basis of the potential of organic acids to form complexes with CrIII.  相似文献   

20.
A greenhouse pot experiment was conducted to evaluate the feasibility of using a native ornamental plant, Mesua ferrea L. as phytostabilizer for chromium ore tailings (COT) and to assess the metal accumulation capacity. Different ratios of soil and COT were taken in pots and sowed with seeds of M. ferrea. Plants were harvested at various intervals and separated into roots and shoots for analysis of metal concentrations and physiological characteristics of the plants. The study revealed that the plant has great tolerance and stronger ability to accumulate Cr. The results suggested an increase in growth, chlorophyll content, antioxidant activities, as well as metal accumulation capacity of M. ferrea with increasing proportion of COT in the soil. This indicates the plant's efficiency to overcome any stress generated due to excess of chromium as well as other heavy metals. The order of accumulation of heavy metals was observed to be Fe>Cr>Ni>Cd>Co. The accumulation of Cr was higher in root compared to that in shoot. M. ferrea has found to be potential as a native species candidate for phytostabilization of chromium mine tailings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号