首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxicity of four insecticides commonly used in rice pest management, chlorpyrifos, dimethoate, carbaryl and carbosulfan, to the fry of common carp was assessed through median lethal concentrations (LC50) and in vivo inhibition of the brain acetylcholinesterase (AChE) enzyme at sublethal concentrations. The 96‐h LC50 values for these four insecticides were determined to be 0.008, 26.11, 7.85 and 0.60 mg L?1 respectively. Exposure of fish to a series of sublethal concentrations (0.5–5% LC50) of each insecticide for 14 days resulted in concentration‐dependent inhibition in AChE activity in comparison with the controls. AChE activity was greatly inhibited in the fish exposed to sublethal concentrations of chlorpyrifos. Upon transfer to insecticide‐free water, AChE activities in fry exposed to 0.5 and 1% LC50 concentrations of carbaryl and carbosulfan were restored to the control level within 7–21 days whereas the fish exposed to chlorpyrifos or dimethoate did not fully recover from the insecticide‐induced anticholinesterase action. Of the four insecticides tested, chlorpyrifos was the most toxic for the fry of common carp. Although dimethoate was least toxic for the fish under acute exposure, the restoration level of normal AChE activity was slower under chronic exposure in comparison with carbaryl and carbosulfan. Hence, the use of carbamates, especially carbaryl, to control insect pests of rice in rice‐cum‐carp culture systems is recommended when considering survival, restoration of the normal AChE activity and stamina of the cultured fish.  相似文献   

2.
The widespread use of bisphenol A (BPA) has led to its ubiquity in the natural environment. It is extensively incorporated into different industrial products and is associated with deleterious health effects on both public and wildlife. The current trial was conducted to determine the toxic potential of bisphenol A using various parameters viz haematological, biochemical, and cytological in freshwater fish Channa punctatus. For this purpose, fish were exposed to 1.81 mg/l (1/4 of LC50) and 3.81 mg/l (1/2 of LC50) of BPA along with positive (acetone) and negative controls (water) for 96 h. The blood samples were collected at 24, 48, 72, and 96 h post-exposure. Compared to the control group, fish after acute exposure to BPA showed a significant decrease in HB content, number of red blood cells, PCV values whereas a significant increase in WBCs count was recorded with an increase in the exposure period. Besides, oxidative stress (determined as malondialdehyde content) increased as BPA concentration increased. Further, the activity of different antioxidant enzymes like catalase, and superoxide dismutase decreased significantly after treatment. Results also showed significantly increased frequency of morphological alterations, nuclear changes, and increased DNA damage potential of BPA in red blood cells. Further structural analysis of erythrocytes in maximally damaged group using Scanning Electron Microscopy was performed. The study concludes that BPA exhibits genotoxic activity and oxidative stress could be one of the mechanisms leading to genetic toxicity.  相似文献   

3.
Chromium is a well-documented carcinogen. To evaluate the genotoxic potential of hexavalent chromium on an aquatic bio-system, freshwater murrel fish (Channa punctatus) were exposed to potassium dichromate. The 96-h LC50 for potassium dichromate was 61.80 mg/L for the test fish in a static system. On the basis of the 96-h LC50, fish were exposed to sublethal concentrations of the test chemical. Fish exposed to the test chemical were sampled on days 1, 7, 14, 21, and 28 post-exposure and blood and gill cells were collected. Significantly (p < .05) higher DNA damage in both lymphocyte and gillcells and micronuclei formation in whole blood was observed at different test concentrations and sampling times of the test chemical as compared to control fish. The mean% tail DNA in the comet tail assay showed a concentration-dependent increase and the maximum% tail DNA was observed on day 7 of exposure in both cells. A similar trend was also observed in micronuclei induction in blood with maximum induction on day 21. Hexavalent chromium showed genotoxic potential in chronic exposure of C. punctatus, and the micronucleus test and the comet assay are the methods for sensitive and rapid detection of the genetic effects.  相似文献   

4.
辛基酚胁迫对雄性泥鳅抗氧化酶及卵黄蛋白原的影响   总被引:1,自引:0,他引:1  
为研究辛基酚(OP)对雄性泥鳅抗氧化酶活性及血清卵黄蛋白原(VTG)含量的影响,将雄性泥鳅分别暴露于4种不同质量浓度OP(0.12、0.19、0.32、0.52 mg/L)中持续7、14、21 d和28 d,采用试剂盒检测肝脏超氧化物歧化酶(SOD)与过氧化氢酶(CAT)的含量,采用碱不稳定性蛋白结合磷法检测血清VTG的含量。结果表明,0.12 mg/L OP胁迫14 d,肝脏SOD和CAT含量均无显著变化,但是随着胁迫剂量增大和时间延长,SOD和CAT含量降低极其显著,在0.52 mg/L OP胁迫28 d时降到最低水平;泥鳅在0.12 mg/L OP中暴露7 d时,血清VTG含量就有极其显著升高,且随着胁迫剂量增大和时间的延长,VTG含量呈升高趋势。提示OP胁迫对SOD和CAT活性有显著的抑制作用,并随胁迫剂量增大和时间延长而抑制加剧,造成氧化损伤;OP胁迫可诱导VTG合成,并随暴露剂量增大和时间延长而诱导增强,具有明显的雌激素效应,这可能与其氧化损伤有密切关系。  相似文献   

5.
We investigated genotoxicity and oxidative stress in the gills of Labeo rohita exposed to 33.6, 67.1, and 100.6 mg L–1of cadmium chloride at 96 h. Genotoxicity was assessed using single cell gel electrophoresis whereas oxidative stress was monitored through lipid peroxidation induction and antioxidant response parameters, namely reduced glutathione (GSH), glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase (CAT) activities. Significant (p < .05) effect of both concentration and time of exposure was observed on the extent of DNA damage in treated fish. Similarly, malondialdehyde content, level of GSH, and activities of antioxidant enzymes were significantly elevated in treated groups, except CAT. The increased DNA damage and lipid peroxidation (LPO) content along with fluctuation in antioxidant defense system in fish indicated the interaction of cadmium (Cd) with DNA repair processes and production of reactive oxygen species. Thus, Cd is liable for induction of LPO, alteration of antioxidant defenses, and DNA damage in gills of L. rohita.  相似文献   

6.
Hydroquinone (HQ) is found in natural and anthropogenic sources including food, cosmetics, cigarette smoke, and industrial products. In addition to ingestion and dermal absorption, human exposure to HQ may also occur by inhaling cigarette smoke or polluted air. The adverse effects of HQ on respiratory systems have been studied, but genotoxicity HQ on human lung cells is unclear. The aim of this study was to investigate the cytotoxicity and genotoxicity of HQ in human lung alveolar epithelial cells (A549). We found that HQ induced a dose response in cell growth inhibition and DNA damage which was associated with an increase in oxidative stress. Cytotoxicity results demonstrated that HQ was most toxic after 24 h (LC50?=?33 μM) and less toxic after 1 h exposure (LC50?=?59 μM). Genotoxicity of HQ was measured using the Comet assay, H2AX phosphorylation, and chromosome aberration formation. Results from the comet assay revealed that DNA damage was highest during the earlier hours of exposure (1 and 6 h) and thereafter was reduced. A similar pattern was observed for H2AX phosphorylation suggesting that damage DNA may be repaired in later exposure hours. An increase in chromosomal aberration corresponded with maximal DNA damage which further confirmed the genotoxic effects of HQ. To investigate whether oxidative stress was involved in the cytotoxic and genotoxic effects of HQ, cellular glutathione and 8-Oxo-deoguanisone (8-Oxo-dG) formation were measured. A decrease in the reduced glutathione (GSH) and an increase oxidized glutathione (GSSG) was observed during the early hours of exposure which corresponded with elevated 8-Oxo-dG adducts. Together these results demonstrate that HQ exerts its cytotoxic and genotoxic effects in A549 lung cells, probably through DNA damage via oxidative stress.  相似文献   

7.
The aim of the present study was to evaluate the induced genotoxicity (DNA damage) due to organophosphate pesticide profenofos (PFF) in gill cells of freshwater fish Channa punctatus using single cell gel electrophoresis (SCGE)/Comet assay. The 96h LC(50) value of PFF (50% EC) was estimated for the fish species in a semistatic system and then three sub-lethal of LC(50) concentrations viz the sub-lethal 1, sub-lethal 2 and sub-lethal 3 concentrations were determined as 0.58ppb, 1.16ppb and 1.74ppb, respectively. The fish specimens were exposed to these concentrations of the pesticide and the gill tissue samplings were done on 24h, 48h, 72h and 96h post exposure for assessment of DNA damage in terms of percentage of DNA in comet tails. In general, a concentration dependent response was observed in the gill cells with induction of maximum DNA damage at the highest concentration of PFF. The results of the present investigation indicated that PFF could potentially induce genotoxic effect in fish, even in sub-lethal concentrations and SCGE as a sensitive and reliable tool for in vivo assessment of DNA damage caused by the genotoxic agents.  相似文献   

8.
Rasbora daniconius (Ham.) were exposed to zinc sulphate upto 15 days under static bioassay test conditions with renewal of the test solutions every 24 hours. Simultaneously control fish were also kept in water without zinc. The 96 and 240 hr LC50 values were 38.1 and 33.3 PPm of zinc respectively. A reduced mortality rate was observed after 96 hr and LC50 approached a constant value at 240 hr of exposure to the toxicant. Fish showed abnormal behaviour, deposition of mucus and appearance of haemorrhage on the body in case of higher concentrations of zinc, before death. The reported LC50 values in the present study were comparatively higher than those reported by earlier investigators.See offprint requests to: Dr. V. K. Rajbanshi, Department of Limnology and Fisheries, University of Udaipur, Udaipur-313001, India.  相似文献   

9.
Salinity fluctuation is one of the main factors affecting the overall fitness of marine fish. In addition, water borne ammonia may occur simultaneously with salinity stress. Additionally, under such stressful circumstances, fish may encounter food deprivation. The physiological and ion-osmo regulatory adaptive capacities to cope with all these stressors alone or in combination are extensively addressed in fish. To date, studies revealing the modulation of antioxidant potential as compensatory response to multiple stressors are rather lacking. Therefore, the present work evaluated the individual and combined effects of salinity challenge, ammonia toxicity and nutritional status on oxidative stress and antioxidant status in a marine teleost, European sea bass (Dicentrarchus labrax). Fish were acclimated to normal seawater (32 ppt), to brackish water (20 ppt and 10 ppt) and to hypo-saline water (2.5 ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20 mg/L representing 50% of 96h LC50 value for ammonia) for 12 h, 48 h, 84 h and 180 h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Results show that in response to decreasing salinities, oxidative stress indices such as xanthine oxidase activity, levels of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde, MDA) increased in the hepatic tissue of fasted fish but remained unaffected in fed fish. HEA exposure at normal salinity (32 ppt) and at reduced salinities (20 ppt and 10 ppt) increased ammonia accumulation significantly (84 h–180 h) in both feeding regimes which was associated with an increment of H2O2 and MDA contents. Unlike in fasted fish, H2O2 and MDA levels in fed fish were restored to control levels (84 h–180 h); with a concomitant increase in superoxide dismutase (SOD), catalase (CAT), components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity.  相似文献   

10.
The present study was designed to understand the effects of piperonyl butoxide (PBO), modulator of cytochrome P450 (CYP 450), on the neurotoxicity of organophosphate pesticide fenthion in the brain of Oreochromis niloticus used as a model organism. Fish were exposed to one‐fourth of the LC50 value of fenthion (0.567 mg/L) and 0.5 mg/L PBO concentration for 24 h, 96 h, and 15 days. Glutathione (GSH)‐related antioxidant system, lipid peroxidation, stress proteins, and acetylcholinesterase (AchE) activity were investigated. Our results showed that PBO induced the neurotoxic effect of fenthion with increasing oxidative stress in long‐term exposure. GSH‐related antioxidant system might take a role in protecting the brain from these oxidative effects. PBO possibly inhibited the biotransformation of fenthion by inhibiting CYP 450; thereby preventing the brain from AChE inhibition in short‐term exposure. Changes in parameters indicated that PBO caused biphasic response by affecting CYP 450 in the brain of O. niloticus.  相似文献   

11.
Linear alkyl benzene sulphonate (LAS), one of the main ingredients used in synthetic detergents to enhance their cleansing properties. Indiscriminate and untreated discharge of detergents and their residues in both lantic and lotic habitats pose a variety of ecological threats and also adversely affect aquatic fauna. In vivo, LAS metabolism and biotransformation occurs via monooxygenases in liver, leading to Reactive Oxygen Species, ROS, production and consequently oxidative stress by disturbing cellular antioxidant enzymatic equilibrium. Present study aims to evaluate the activities of two widely distributed antioxidant enzymes viz., catalase (CAT) and superoxide dismutase (SOD) and ROS induced histological impairments in liver of freshwater fish, Channa punctatus. For the estimation of oxidative stress and hepatic impairments, well acclimatized fishes were divided in three groups. Fish of group G1 serves as control whereas fish of the other two groups, G2 and G3 were exposed to two fractions, 1/20th and 1/10th of 96 h LC50 of LAS for 24, 48, 72 and 96 h of exposure periods. Our results showed a significant induction in CAT and SOD activities in liver tissue of C. punctatus in a dose and time dependent manner. ROS induced histopathological impairments in hepatic tissues are characterized by loosely arranged, irregularly distributed and degenerated hepatocytes with increased vacuolization and pyknotic nuclei. The results are quite suggestive that LAS intoxication generates oxidative stress by ROS production which brings about histopathological impairments in exposed fish.  相似文献   

12.
The neurotoxic effects of monocrotophos on the brain of the nile tilapia fish (Oreochromis niloticus) were examined, using a static bioassay under laboratory conditions. By probit analysis the 96 h LC50 value of monocrotophos was 4.9 mg/l. After 96 h exposure to acute levels of monocrotophos, the brain acetylcholinesterase (AChE) activity decreased progressively as the concentration of monocrotophos increased. In addition, four weeks following transfer to toxicant-free water after exposure to 1 mg monocrotophos, nile tilapia fish brain regained 95% of control AChE activity. The results indicate that inhibition of AChE activity in fish exposed to monocrotophos may serve as an indicator of hazard due to application of this chemical in the natural environment.Special issue dedicated to Dr. Robert Balazs.  相似文献   

13.
This study reports the 96-h LC50 value and tissue copper (Cu) levels and biochemical changes in juvenile fish (Acipenser persicus) exposed to 0.026?mg/l ambient Cu for 1, 7 and 14?days. It then examined the recovery of the same parameters after placing the juvenile fish in clean water for a further period of 28?days. The intestine, kidney and gill Cu levels, plasma glucose, total protein, triglyceride, cortisol, triiodothyronine and thyroxine concentrations, liver protein contents, liver catalase, superoxide dismutase (SOD) and glutathione S-transferase activities were studied. The 96-h LC50 value of Cu was 0.502?mg/l for juvenile A. persicus. The results indicate that Cu exposure produced significant accumulations of Cu in gills and kidney over the treatment time. Sublethal dose of Cu resulted in a short-term increase in plasma glucose, total protein and cortisol levels that decreased with time. After the 28-day recovery phase, there were significant differences in kidney Cu levels and triglyceride concentrations as well as SOD activities between recovery fish treatments and their control groups on day 42. The 28-day recovery phase caused significant decreases in total protein levels and SOD activities of Cu-exposed fish on day 42 compared to day 14. The results suggest that 28?days are insufficient for complete recovery to Cu exposure by juveniles and a longer period would be required for full recovery. Moreover, the study showed that the recovery phase following Cu exposure could change biochemical parameters to levels that are not close to those seen during exposure or control levels.  相似文献   

14.
The prawn Macrobrachium sintangense is likely to be subjected to occasional exposure to combined metal and saline stressors in its natural environment. This research evaluated the acute toxicity (96?h LC50) of cadmium (Cd) on the prawn M. sintangense, with respect to the osmoregulatory capacity (OC) of prawns and to document histological changes in the gills after exposure to sublethal Cd concentrations at different salinities. The 96?h LC50 of Cd to M. sintangense decreased with increasing salinity. The 96?h LC50 values were 89.12 (72.53–109.50), 681.26 (554.20–837.46) and 825.37 (676.99–1006.27) μg CdL?1 at 0, 10 and 20 ppt, respectively. The OC of prawns exposed to 30?μg?CdL?1 at 0 ppt and to 300?μg?CdL?1 at10 ppt decreased significantly compared with that of control prawns exposed to 0 and 10 ppt respectively. Swelling, hyperplasia and necrosis of gill lamellae resulting in the loss of marginal canals were observed in the gills of prawns exposed to 30?μg?CdL?1 at 0 ppt and to 300?μg?CdL?1 at 10 ppt for 7?days.  相似文献   

15.
The effects of three fungicides of a new generation were studied for cyprinid young of the year. Acute toxicity (96 h of exposure) has an extremely negative effect on fish. The minimal lethal concentrations of fungicides (LC16) caused metabolic disorders and the activation of detoxication processes in carp liver at the very beginning of exposure to toxins (24–96 h). The increase in exposure led to the lipid peroxidation process intensifying and to a simultaneous decrease in the effectiveness of antioxidant protection (AOP) and detoxication. The inhibition of the activity of superoxide dismutase, catalase, and glutathione-S-transferase was observed, and the depletion of reduced glutathione reserves in the liver was found. The progression of intoxication over 15 days resulted in morphological and functional alterations in the fish liver and death in 49% of fish exposed to toxins.  相似文献   

16.
Tetrachlorocatechol (TCC) is one of the most toxic chlorinated catechol produced by the chlorobleaching of pulp and frequently found in the kraft pulp mill effluents. Toxicity of TCC to common carp, Cyprinus carpio and their ethological changes were evaluated in the present study. The 24, 48, 72 and 96 h LC50 values of TCC to C. carpio were 4.73, 3.95, 3.20 and 2.43 mg/l respectively. The mortality rate of C. carpio showed significant relationship (p < 0.05) at different exposure times (24, 48, 72 and 96 h) in different treatments of TCC (2, 3, 4, 5 and 7 mg/l). On the other hand, a significant correlation (p < 0.01) was observed between the mortality rate of fish with all the concentrations of TCC. Mean opercular movement in the fish increased significantly with the increasing dose and time of exposure to TCC indicating acute respiratory distress. The jerky movement, somersaulting, circular movement and mucus secretion of fish increased gradually with the increasing concentrations and exposure times of TCC for adapting a compensatory mechanism to derive energy in order to avoid stress due to toxicity.  相似文献   

17.
In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.  相似文献   

18.
The potential usefulness of an insect model to evaluate oxidative stress induced by environmental pollutants was examined with trivalent arsenic (As3+, NaAsO2) and pentavalent arsenic (As5+, Na2HAsO4) in adult female house flies, Musca domestica, and fourth-instar cabbage loopers, Trichoplusia ni. M. domestica was highly susceptible to both forms of arsenic following 48 h exposure in the drinking water with LC50s of 0.008 and 0.011% w/v for As3+ and As5+, respectively. T. ni larvae were susceptible to dietary As3+ with an LC50 of 0.032% w/w but seem to tolerate As5+ well with an LC50 of 0.794% concentration after 48 h exposure. The minimally acute LC5 dose of both As3+ and As5+ varied considerably but averaged 0.005% for both insects. The potential of both valencies of arsenic for inducing oxidative stress in the insects exposed ad libitum to approximately LC5 levels was assessed. The parameters examined were the alterations of the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), the peroxidase activity of glutathione transferase (GSTPX), and glutathione reductase (GR), and increases in lipid peroxidation and protein oxidation. SOD (1.3-fold), GST (1.6-fold), and GR (1.5-fold) were induced by As3+ in M. domestica but CAT and GSTPX were not affected. As5+ had no effect on M. domestica. In T. ni, the antioxidant enzyme activities were not affected by As3+ except for SOD which was suppressed by 29.4% and GST which was induced by 1.4-fold. As5+ had no effect except the suppression of SOD by 41.2%. Lipid peroxidation and protein oxidation, which represent stronger indices of oxidative stress, were elevated in both insects by up to 2.9-fold. However, based on the antioxidant enzyme response to the arsenic anions, the mode of action of arsenic induced oxidative stress may differ between the two insects. Until this aspect is further clarified, evidence at this time favors the prospect of As3+ as a pro-oxidant, especially for M. domestica. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Abstract

The aim of this study was to determine by static bioassay whether water hardness affects the toxicity of Zn and Cu to a fish, Gambusia holbrooki Girard, 1859. The acute toxicity of selected heavy metals to G. holbrooki was determined in soft, hard and very hard water (25, 125 and 350 mg L?1 as CaCO3). Results showed that water hardness had a significant effect on Cu and on Zn toxicity on fish. Toxicity of Cu and of Zn increased with decreasing water hardness. The 96 hours LC50 values for G. holbrooki were higher in the hard and very hard water compared with soft water. Water hardness had a much smaller effect upon the acute toxicity of Cu than that of Zn. It was observed that the 96 hours LC50 for Cu at the soft, hard and very hard water was found to be 0.017, 0.17 and 0.65 mg L?1, respectively, while the 96 hours LC50 for Zn at the soft, hard and very hard water was found to be 0.46, 48.1 and 121.6 mg L?1, respectively.  相似文献   

20.
[目的] 研究稻虾共作模式条件下,稻田封闭除草剂对克氏原螯虾产生的急性毒性。[方法] 采用半静态试验方法,研究3种酰胺类除草剂(乙草胺、丙草胺和丁草胺)对克氏原螯虾的急性毒性,计算3种酰胺类除草剂对克氏原螯虾的安全浓度,并分析其LC50衰减规律。[结果] 随着暴露时间和除草剂浓度的增加,虾体侧躺,步行足和游泳足活动频率降低,最终死亡。乙草胺对克氏原螯虾的96 h半致死浓度(LC50)和安全浓度(SC)分别为0.0707和0.0146 mL·L-1;丙草胺对克氏原螯虾的96 h LC50和SC分别为0.0119和0.0021 mL·L-1;丁草胺对克氏原螯虾的96h LC50和SC分别为0.0073和0.0014 mL·L-1。乙草胺、丙草胺及丁草胺除草剂LC50随着暴露时间延长呈下降趋势,符合双曲线衰减模型,回归方程分别为:① y1=2.0840x-0.7380R2=0.9973);② y2=0.1106x-0.4930R2=0.9872);③ y3=0.2236x-0.7480R2=0.9990)。克氏原螯虾对3种除草剂的敏感性由高到低依次为:丁草胺 > 丙草胺 > 乙草胺。[结论] 乙草胺和丙草胺可在稻田综合种养生产过程中按常规剂量使用,而丁草胺按常规剂量使用可能存在较大的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号