首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and AimsRhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished.MethodsThe ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species.Key ResultsPer unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length.ConclusionsWhen root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.  相似文献   

2.
Effects of rhizosphere microorganisms on Fe uptake by oat (Avena sativa) and maize (Zea mays) were studied in short-term (10 h) nutrient solution experiments. Fe was supplied either as microbial siderophores (pseudobactin [PSB] or ferrioxamine B [FOB]) or as phytosiderophores obtained as root exudates from barley (epi-3-hydroxy-mugineic acid [HMA]) under varied population densities of rhizosphere microorganisms (axenic, uninoculated, or inoculated with different microorganism cultures). When maize was grown under axenic conditions and supplied with FeHMA, Fe uptake rates were 100 to 300 times higher compared to those in plants supplied with Fe siderophores. Fe from both sources was taken up without the involvement of an extracellular reduction process. The supply of FeHMA enhanced both uptake rate and translocation rate to the shoot (more than 60% of the total uptake). However, increased density of microorganisms resulted in a decrease in Fe uptake rate (up to 65%), presumably due to microbial degradation of the FeHMA. In contrast, when FeFOB or FePSB was used as the Fe source, increased population density of microorganisms enhanced Fe uptake. The enhancement of Fe uptake resulted from the uptake of FeFOB and FePSB by microorganisms adhering to the rhizoplane or living in the free space of cortical cells. The microbial apoplastic Fe pool was not available for root to shoot transport or, thus, for utilization by the plants. These results, in addition to the low uptake rate under axenic conditions, are in contrast to earlier hypotheses suggesting the existence of a specific uptake system for Fe siderophores in higher plants. The bacterial siderophores PSB and FOB were inefficient as Fe sources for plants even when supplied by stem injection. It was concluded that microorganisms are involved in degradation processes of microbial siderophores, as well as in competition for Fe with higher plants.  相似文献   

3.
Christ RA 《Plant physiology》1974,54(4):582-585
The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species.  相似文献   

4.
Abscisic acid (ABA) has been demonstrated to be involved in iron (Fe) homeostasis, but the underlying mechanism is largely unknown. Here, we found that Fe deficiency induced ABA accumulation rapidly (within 6 h) in the roots of Arabidopsis. Exogenous ABA at 0.5 μM decreased the amount of root apoplastic Fe bound to pectin and hemicellulose, and increased the shoot Fe content significantly, thus alleviating Fe deficiency‐induced chlorosis. Exogenous ABA promoted the secretion of phenolics to release apoplastic Fe and up‐regulated the expression of AtNRAMP3 to enhance reutilization of Fe stored in the vacuoles, leading to a higher level of soluble Fe and lower ferric–chelate reductase (FCR) activity in roots. Treatment with ABA also led to increased Fe concentrations in the xylem sap, partially because of the up‐regulation of AtFRD3, AtYSL2 and AtNAS1, genes related to long‐distance transport of Fe. Exogenous ABA could not alleviate the chlorosis of abi5 mutant resulting from the significantly low expression of AtYSL2 and low transport of Fe from root to shoot. Taken together, our data support the conclusion that ABA is involved in the reutilization and transport of Fe from root to shoot under Fe deficiency conditions in Arabidopsis.  相似文献   

5.
《Trends in plant science》2023,28(8):941-954
Iron (Fe) is an essential micronutrient for plants, and its storage in the apoplast represents an important Fe pool. Plants have developed various strategies to reutilize this apoplastic Fe pool to adapt to Fe deficiency. In addition, growing evidence indicates that the dynamic changes in apoplastic Fe are critical for plant adaptation to other stresses, including ammonium stress, phosphate deficiency, and pathogen attack. In this review, we discuss and scrutinize the relevance of apoplastic Fe for plant behavior changes in response to stress cues. We mainly focus on the relevant components that modulate the actions and downstream events of apoplastic Fe in stress signaling networks.  相似文献   

6.
High concentrations of Fe in the roots of plants grown in calcareous soil have been found in a variety of plants, which, nevertheless, show Fe deficiency symptoms. In the present work, energy dispersive X-ray (EDX) analysis at the cellular level has been used to characterize high root Fe concentrations in maize ( Zea mays L.) grown in a calcareous soil in comparison with low root Fe concentrations under acidic soil conditions. Roots were thoroughly washed to remove adhering soil particles from the root surface as far as possible. To avoid any interference with possibly still present soil particles, the excitation beam was focused on radial walls of neighboring cells as well as on the symplast. Under alkaline conditions, high Fe concentrations in the m M range and higher accumulated in the epidermal root apoplast. Symplastic Fe was not detectable. Only traces of Fe were detectable in the apoplast of the cortex parenchyma. Under acidic conditions, apoplastic root Fe concentrations were clearly lower than under alkaline conditions, and no Fe was detectable in the root apoplast by use of EDX analysis. We conclude that, under alkaline conditions, high amounts of Fe are trapped in the epidermal root apoplast (apoplastic Fe inactivation), probably because of a high apoplastic pH and thus restricted translocation towards the root stele and to the upper plant parts. In contrast, on acidic soils Fe translocation towards the root stele and thus Fe supply to the upper plant parts was not impaired. Our findings imply that Fe deficiency on calcareous soils is not caused by restricted acquisition of Fe from the soil.  相似文献   

7.
采用土培盆栽方法模拟玉米/花生、大麦/花生、燕麦/花生、小麦/花生、高粱/花生5种种植方式,研究混作对花生根系质外体铁的累积和还原力的影响.结果表明,当花生与5种分泌植物铁载体能力不同的禾本科作物混作时,花生新叶叶色正常,而单作花生则表现出严重的缺铁黄化症状,混作花生各部位的含铁量明显增加.与麦类作物(大麦、燕麦、小麦)混作的花生其各部位铁含量高于与玉米、高粱混作的花生,说明麦类作物改善花生铁营养的能力强于玉米、高粱,而两个玉米品种之间的能力差异不大。这主要是由于麦类作物分泌植物铁载体能力高于玉米、高粱.在花生生长至第50、60和70d时,混作花生根系质外体铁含量也随着逐渐增加,并始终高于单作花生.同时,混作明显地提高了花生根际土壤有效铁的含量,花生根系还原力也逐步提高.混作花生逐渐提高的还原力和介质中不断供给的易被花生还原吸收的铁。在改善花生的铁营养方面起了重要的作用.  相似文献   

8.
采用土培盆栽方法模拟玉米/花生、大麦/花生、燕麦/花生、小麦/花生、高粱/花生5种种植方式,研究混作对花生根系质外体铁的累积和还原力的影响.结果表明,当花生与5种分泌植物铁载体能力不同的禾本科作物混作时,花生新叶叶色正常,而单作花生则表现出严重的缺铁黄化症状,混作花生各部位的含铁量明显增加.与麦类作物(大麦、燕麦、小麦)混作的花生其各部位铁含量高于与玉米、高粱混作的花生,说明麦类作物改善花生铁营养的能力强于玉米、高粱,而两个玉米品种之间的能力差异不大,这主要是由于麦类作物分泌植物铁载体能力高于玉米、高粱.在花生生长至第50、60和70d时,混作花生根系质外体铁含量也随着逐渐增加,并始终高于单作花生.同时,混作明显地提高了花生根际土壤有效铁的含量,花生根系还原力也逐步提高.混作花生逐渐提高的还原力和介质中不断供给的易被花生还原吸收的铁,在改善花生的铁营养方面起了重要的作用.  相似文献   

9.
? Retranslocation of iron (Fe) from source leaves to sinks requires soluble Fe binding forms. As much of the Fe is protein-bound and associated with the leaf nitrogen (N) status, we investigated the role of N in Fe mobilization and retranslocation under N deficiency- vs dark-induced leaf senescence. ? By excluding Fe retranslocation from the apoplastic root pool, Fe concentrations in source and sink leaves from hydroponically grown barley (Hordeum vulgare) plants were determined in parallel with the concentrations of potential Fe chelators and the expression of genes involved in phytosiderophore biosynthesis. ? N supply showed opposing effects on Fe pools in source leaves, inhibiting Fe export out of source leaves under N sufficiency but stimulating Fe export from source leaves under N deficiency, which partially alleviated Fe deficiency-induced chlorosis. Both triggers of leaf senescence, shading and N deficiency, enhanced NICOTIANAMINE SYNTHASE2 gene expression, soluble Fe pools in source leaves, and phytosiderophore and citrate rather than nicotianamine concentrations. ? These results indicate that Fe mobilization within senescing leaves is independent of a concomitant N sink in young leaves and that phytosiderophores enhance Fe solubility in senescing source leaves, favoring subsequent Fe retranslocation.  相似文献   

10.
Stephan  Udo W. 《Plant and Soil》2002,241(1):19-25
Iron is abundant in most soils, but ferric compounds are almost insoluble. Therefore, plant roots use as tools acidification and enzymatic reduction of iron at the outer cell surface (strategy I) or solubilization by phytosiderophores, which are specific ferric chelators (strategy II). In the first case, iron is taken up as Fe2+ into the root symplast, and in the latter one, iron is taken up as Fe(III) complex. The path of iron from the root surface, up to the point of the xylem vessels within the central cylinder, may be completely symplasmic. However, a part of this route also may be an apoplasmic one, through the free space of the cell walls of rhizodermis and cortex (apoplast). In the endodermis, the Casparian band forms a strict barrier for apoplasmic transport; to move past this site, all ions must enter the symplast. During symplasmic transport, the intracellular environment is protected against the reactive species of iron by handling of iron in chelated forms. A promising candidate for this purpose is the plant-endogenous chelator nicotianamine. At the apoplasmic site, iron can be oxidized followed by precipitation as hydroxide or phosphate compounds. Thus, a pool of apoplastic iron can be formed, as shown by reductive mobilization or by proton-induced X-ray emission. This pool may be remobilized when iron deficiency takes place. During radial transport to the vessels, vacuoles may compete with the transport stream forming an iron store. When there is an iron excess, as in plants growing in waterlogged soils or by experimental techniques, plants can escape the deleterious effects of free iron by depositing it in phytoferritin, a storage protein inducible under iron excess. Also, nicotianamine forms a pool of metabolically available iron. Thus, in roots cells of the nicotianamine-free tomato mutant chloronerva iron precipitations occur as evidenced by energy dispersive X-ray analysis and the electron microscopic energy loss technique of energy spectroscopic imaging. Future research concerning the plant root's iron metabolism are needed to clarify the function of nicotianamine in intra- and intercellular iron trafficking and to identify the so-called iron-sensor which mediates the regulation of iron acquisition reactions of rhizodermal cells in response to the iron nutritional status of the plant.  相似文献   

11.
Cesco  S.  Nikolic  M.  Römheld  V.  Varanini  Z.  Pinton  R. 《Plant and Soil》2002,241(1):121-128
The capability of cucumber (Cucumis sativus L., cv. Serpente cinese), a Strategy I plant and barley (Hordeum vulgaris L., cv. Europa), a Strategy II plant to use Fe complexed by a water-soluble humic fraction (WEHS) extracted from a peat, was studied. Uptake of 59Fe from 59Fe-WEHS by cucumber plants was higher at pH 6.0 than at pH 7.5. Roots of intact cucumber plants were able to reduce the FeIII-WEHS complex either at pH 6.0 or 7.5, rates being higher in the assay medium buffered at pH 6.0. After supply of 59Fe-WEHS, a large pool of root extraplasmatic 59Fe was formed, which could be used to a large extent by Fe-deficient plants, particularly under acidic conditions. Uptake of 59Fe from 59Fe-WEHS by Fe-sufficient and Fe-deficient barley plants was examined during periods of high (morning) and low (evening) PS release. Uptake paralleled the diurnal rhythm of PS release. Furthermore, 59Fe uptake was strongly enhanced by addition of PS to the uptake solution in both Fe-sufficient and Fe-deficient plants. High amount of root extraplasmatic 59Fe was formed upon supply of Fe-WEHS, particularly in the evening experiment. Fe-deficient barley plants were able to utilize Fe from the root extraplasmatic pool, conceivably as a result of high rates of PS release. The results of the present work together with previous observations indicate that cucumber plants (Strategy I) utilize Fe complexed to WEHS, presumably via reduction of FeIII-WEHS by the plasma membrane-bound reductase, while barley plants (Strategy II) use an indirect mechanism involving ligand exchange between WEHS and PS.  相似文献   

12.
Collaborative experiments were conducted to determine whether microbial populations associated with plant roots may artifactually affect the rates of Fe uptake and translocation from microbial siderophores and phytosiderophores. Results showed nonaxenic maize to have 2 to 34-fold higher Fe-uptake rates than axenically grown plants when supplied with 1 μM Fe as either the microbial siderophore, ferrioxamine B (FOB), or the barley phytosiderophore, epi-hydroxymugineic acid (HMA). In experiments with nonsterile plants, inoculation of maize or oat seedlings with soil microorganisms and amendment of the hydroponic nutrient solutions with sucrose resulted in an 8-fold increase in FOB-mediated Fe-uptake rates by Fe-stressed maize and a 150-fold increase in FOB iron uptake rates by Fe-stressed oat, but had no effect on iron uptake by Fe-sufficient plants. Conversely, Fe-stressed maize and oat plants supplied with HMA showed decreased uptake and translocation in response to microbial inoculation and sucrose amendment. The ability of root-associated microorganisms to affect Fe-uptake rates from siderophores and phytosiderophores, even in short-term uptake experiments, indicates that microorganisms can be an unpredictable confounding factor in experiments examining mechanisms for utilization of microbial siderophores or phytosiderophores under nonsterile conditions.  相似文献   

13.
Under iron deficiency the release of so-called phytosiderophores by roots of barley plants ( Hordeum vulgare L. cv. Europa) was greater by a factor of 10 to 50 compared to iron-sufficient plants. This enhanced release occurred particularly in apical zones of the seminal roots and in the lateral root zones. Under iron deficiency, uptake rates for iron, supplied as FeIII phytosiderophore, increased by a factor of ca 5 as compared to iron-sufficient plants. This enhanced uptake rate for iron was also much more pronounced in apical than in basal root zones. In contrast, with supply of the synthetic iron chelate, FelII EDDHA (ferric diaminoethane-N, N-di- o -hydroxyphenyl acetic acid), the Fe deficiency-enhanced uptake rates for iron were only small and similar along the roots, except for the lateral root zones. The high selectivity of barley roots for uptake and translocation of FeIII phytosiderophores compared with FeIII EDDHA is reflected by the fact that, at the same external concentration (2 μ M ), rates of uptake and translocation of iron from FeIII phytosiderophores were between 100 (Fe-sufficient) and 1 000 times higher (Fe-deficient plants) than from FeIII EDDHA. The relatively high rates of uptake and particularly of translocation of iron supplied as FeIII EDDHA in the zone of lateral root formation strongly suggest an apoplastic pathway of radial transport of the synthetic iron chelate into the stele in this root zone.
The results demonstrate that apical root zones are the main sites both for Fe deficiency-enhanced release of phytosiderophores and for uptake and translocation of iron supplied as FeIII phytosiderophores.  相似文献   

14.
Apoplastic transport across young maize roots: effect of the exodermis   总被引:27,自引:0,他引:27  
The uptake of water and of the fluorescent apoplastic dye PTS (trisodium 3-hydroxy-5,8,10-pyrenetrisulfonate) by root systems of young maize (Zea mays L.) seedlings (age: 11–21 d) has been studied with plants which either developed an exodermis (Casparian band in the hypodermis) or were lacking it. Steady-state techniques were used to measure water uptake across excised roots. Either hydrostatic or osmotic pressure gradients were applied to induce water flows. Roots without an exodermis were obtained from plants grown in hydroponic culture. Roots which developed an exodermis were obtained using an aeroponic (=mist) cultivation method. When the osmotic concentration of the medium was varied, the hydraulic conductivity of the root (Lp r in m3 · m−2 · MPa−1 · s−1) depended on the osmotic pressure gradient applied between root xylem and medium. Increasing the gradient (i.e. decreasing the osmotic concentration of the medium; range: zero to 40 mM of mannitol), increased the osmotic Lp r. In the presence of hydrostatic pressure gradients applied by a pressure chamber, root Lp r was constant over the entire range of pressures (0–0.4 MPa). The presence of an exodermis reduced root Lp r in hydrostatic experiments by a factor of 3.6. When the osmotic pressure of the medium was low (i.e. in the presence of a strong osmotic gradient between xylem sap and medium), the presence of an exodermis caused the same reduction of root Lp r in osmotic experiments as in hydrostatic ones. However, when the osmotic concentration of the medium was increased (i.e. the presence of low gradients of osmotic pressure), no marked effect of growth conditions on osmotic root Lp r was found. Under these conditions, the absolute value of osmotic root Lp r was lower by factors of 22 (hydroponic culture) and 9.7 (aeroponic culture) than in the corresponding experiments at low osmotic concentration. Apoplastic flow of PTS was low. In hydrostatic experiments, xylem exudate contained only 0.3% of the PTS concentration of the bathing medium. In the presence of osmotic pressure gradients, the apoplastic flow of PTS was further reduced by one order of magnitude. In both types of experiments, the development of an exodermis did not affect PTS flow. In osmotic experiments, the effect of the absolute value of the driving force cannot be explained in terms of a simple dilution effect (Fiscus model). The results indicate that the radial apoplastic flows of water and PTS across the root were affected differently by apoplastic barriers (Casparian bands) in the exodermis. It is concluded that, unlike water, the apoplastic flow of PTS is rate-limited at the endodermis rather than at the exodermis. The use of PTS as a tracer for apoplastic water should be abandoned. Received: 9 October 1997 / Accepted: 5 February 1998  相似文献   

15.
Siderophores, biogenic chelating agents that facilitate Fe(III) uptake through the formation of strong complexes, also form strong complexes with Mn(III) and exhibit high reactivity with Mn (hydr)oxides, suggesting a pathway by which Mn may disrupt Fe uptake. In this review, we evaluate the major biogeochemical mechanisms by which Fe and Mn may interact through reactions with microbial siderophores: competition for a limited pool of siderophores, sorption of siderophores and metal–siderophore complexes to mineral surfaces, and competitive metal-siderophore complex formation through parallel mineral dissolution pathways. This rich interweaving of chemical processes gives rise to an intricate tapestry of interactions, particularly in respect to the biogeochemical cycling of Fe and Mn in marine ecosystems.  相似文献   

16.
Above-canopy sprinkler irrigation with saline water favours the absorption of salts by wetted leaves and this can cause a yield reduction additional to that which occurs in salt-affected soils. Outdoor pot experiments with both sprinkler and drip irrigation systems were conducted to determine foliar ion accumulation and performance of maize and barley plants exposed to four treatments: nonsaline control (C), salt applied only to the soil (S), salt applied only to the foliage (F) and salt applied to both the soil and to the foliage (F+S). The EC of the saline solution employed for maize in 1993 was 4.2 dS m–1 (30 mM NaCl and 2.8 mM CaCl2) and for barley in 1994, 9.6 dS m–1 (47 mM NaCl and 23.5 mM CaCl2). The soil surface of all pots was covered so that in the F treatment the soil was not salinized by the saline sprinkling and drip irrigation supplied nutrients in either fresh (treatments C and F) or saline water (treatments S and F+S).Saline sprinkling increased leaf sap Na+ concentrations much more than did soil salinity, especially in maize, even though the saline sprinkling was given only two or three times per week for 30 min, whereas the roots of plants grown in saline soil were continuously exposed to salinity. By contrast, leaf sap Cl concentrations were increased similarly by saline sprinkling and soil salinity in maize, and more by saline sprinkling than saline soil in barley. It is concluded that barley leaves, and to a greater extent maize leaves, lack the ability to selectively exclude Na+ when sprinkler irrigated with saline water. Moreover, maize leaves selectively absorbed Na+ over Cl whereas barley leaves showed no selectivity. When foliar and root absorption processes were operating together (F+S treatment) maize and barley leaves accumulated 11–14% less Na+ and Cl than the sum of individual absorption processes (treatment F plus treatment S) indicating a slight interaction between the absorption processes. Vegetative biomass at maturity and cumulative plant water use were significantly reduced by saline sprinkling. In maize, reductions in biomass and plant water use relative to the control were of similar magnitude for plants exposed only to saline sprinkling, or only to soil salinity; whereas in barley, saline sprinkling was more detrimental than was soil salinity. We suggest that crops that are salt tolerant because they possess root systems which efficiently restrict Na+ and Cl transport to the shoot, may not exhibit the same tolerance in sprinkler systems which wet the foliage with saline water. ei]T J Flowers  相似文献   

17.
Lindsay SE  Fry SC 《Planta》2008,227(2):439-452
Primary cell wall polysaccharides of some plants carry ester-linked feruloyl groups that can be oxidatively dimerised both within the protoplast and after secretion into the apoplast. Apoplastic dimerisation has been postulated to form inter-polysaccharide cross-links, contributing to wall assembly, but this role remains conjectural. By feeding cultured cells with [14C]cinnamate, we monitored the kinetics of polysaccharide-binding and subsequent dimerisation of 14C-labelled feruloyl groups. Cultured maize and spinach cells took up [14C]cinnamate more rapidly than barley, Arabidopsis, Acer, tomato and rose cultures. Maize and spinach cells rapidly formed [14C]feruloyl-polysaccharides and, simultaneously, low-Mr [14C]feruloyl esters. When all free [14C]cinnamate had been consumed, there followed a gradual recruitment of radiolabel from the low-Mr pool into the polysaccharide fraction. A proportion of the [14C]feruloyl-polysaccharides was sloughed into the culture medium, the rest remaining wall-bound. Some of the polysaccharide-bound [14C]feruloyl groups were coupled to form dehydrodiferulates. At least six putative isomers of [14C]dehydrodiferulate were formed both rapidly (thus intra-protoplasmically) and gradually (thus mainly apoplastically). These data do not support the hypothesis that intra-protoplasmic dimerisation yields predominantly one isomer (8–5′-dehydrodiferulate). In maize, apoplastic coupling was much more extensive in 7-day old than in 2-day-old cultures; indeed, in 2-day-old cultures apoplastic coupling could not be evoked even by exogenous H2O2, suggesting strong control of peroxidase action by apoplastic factors. When apoplastic coupling was minimised by exogenous application of peroxidase-blockers (iodide, dithiothreitol and cysteine), a higher proportion of the secreted [14C]feruloyl-polysaccharides was sloughed into the medium. This observation lends support to the hypothesis that feruloyl coupling contributes to wall assembly.  相似文献   

18.
19.
A radial oxygen loss (ROL) barrier in roots of waterlogging‐tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging‐tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short‐arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.  相似文献   

20.
Christ RA 《Plant physiology》1974,54(4):579-581
A method is described by which the effect of chelated Fe can be compared with the effect of ionic Fe in nutrient solution cultures over a prolonged period of time. Plants are grown in two solutions in succession: the one containing all nutrient elements except Fe, the other one containing the Fe compound together with Ca(NO3)2. In experiments with soybeans (Glycine maxima (L.) Merr.) and with corn (Zea mays L.) it was shown that a 7-day cycle with the ratio of 4 days nutrient solution to 3 days Fe solution resulted in growth and Fe nutrition similar to plants grown with a normal nutrient solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号