首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

A computer assisted pH-metric investigation has been carried out on the speciation of complexes of Co(II), Ni(II) and Cu(II) with L-dopa and 1,10-phenanthroline. The titrations were performed in the presence of different relative concentrations (M:L:X = 1.0:2.5:2.5; 1.0:2.5:5.0; 1.0:5.0:2.5) of metal (M) to L-dopa (L) and 1,10-phenanthroline (X) with sodium hydroxide in varying concentrations (0-60% v/v) of 1,2-propanediol-water mixtures at an ionic strength of 0.16 mol L-1 and at a temperature of 303.0 K. Stability constants of the ternary complexes were refined using MINIQUAD75. The species MLXH, MLX, ML2X and MLX2H for Co(II) and Cu(II) and MLXH, MLX and MLX2H for Ni(II) were detected. The extra stability of ternary complexes compared to their binary complexes was believed to be due to electrostatic interactions of the side chains of ligands, charge neutralisation, chelate effect, stacking interactions and hydrogen bonding. The species distribution with pH at different compositions of 1, 2-propanediol-water mixtures and plausible equilibria for the formation of species were also presented. The bioavailability of the metal ions is explained based on the speciation.  相似文献   

3.
Abstract

Complexation of toxic metal ions with maleic acid in (0.0–2.5% w/v) cetyltrimethylammonium bromide (CTAB)–water mixtures has been studied pH-metrically at ambient conditions and an ionic strength of 0.16 mol L-1. The existence of different binary species was established from modelling studies using the computer program MINIQUAD75. The best-fit chemical models were selected based on statistical parameters such as the crystallographic R factor and sum of the squares of residuals in mass-balance equations. The models for binary complex systems contain the chemical species ML2, ML2H and ML3 for Pb(II), Cd(II) and Hg(II) in CTAB–water mixtures. The trend in the variation of stability constants with change in the mole fraction of the medium was explained based on electrostatic and non-electrostatic forces. Distribution of the species with pH at different compositions of CTAB–water mixtures was also presented.  相似文献   

4.
Abstract

Chemical speciation of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 2,3-dihydroxybenzoic acid in 0.0-60.0% v/v 1, 2-propanediol-water mixtures maintaining an ionic strength of 0.16 mol dm-3 at 303±0.1 K has been studied pH metrically. The predominant complexes formed are ML, ML2 and ML2H2 for Co(II), Ni(II) and Zn(II) and ML, ML2, ML2H and ML2H2 for Cu(II). Models containing different numbers of species were refined by using the computer program MINIQUAD75. Selection of the best fit chemical models was based on statistical parameters and residual analysis. The trend in variation of complex stability constants with dielectric constant of the medium is explained on the basis of electrostatic and non-electrostatic forces. Distributions of species, formation equilibria and effect of influential parameters on the stability constants have been presented. The possible structures of the various species are elucidated on the basis of the analysis of the pH-metric data.  相似文献   

5.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

6.
Abstract

Speciation of binary complexes of Co(II), Ni(II) and Cu(II) with L-aspartic acid in (0-60% v/v) propylene glycol-water mixtures was studied pH metrically at 303.0±0.1 K and at an ionic strength of 0.16 mol L-1. The binary species refined were ML, ML2, ML2H2, ML2H3 and ML2H4. The stabilities of the complexes followed the Irving-Williams order i.e.Co(II) <Ni(II) < Cu(II). The linear variation of stability constants as a function of dielectric constant of the medium indicated the dominance of electrostatic forces over non-electrostatic forces. Some species were stabilised due to electrostatic interactions and some were destabilised due to the decreased dielectric constant. The order of ingredients influencing the magnitudes of stability constants due to incorporation of errors in their concentrations was alkali > acid > ligand > metal. Equilibria for the formation of binary complexes were proposed based on the forms of the ligand and their existence at different pH values.  相似文献   

7.
《Inorganica chimica acta》1986,116(2):153-156
Complexes of Cu(II), Ni(II) and Co(II) with the Schiff base 1H-indole-3-ethylensalicylaldimine as ligand are studied. The isolated complexes correspond to the general formulae ML2 (where L= ligand).The complexes were characterized by mass spectra, IR, 1H NMR, UVVis spectra and magnetic measurements.The results indicated that the ligands coordinate through N and O with the metal ions in different stereochemistries.  相似文献   

8.
Abstract

A computer assisted pH-metric investigation has been carried out on the speciation of binary complexes of Ca(II), Mg(II) and Zn(II) with L-histidine. The titrations are carried out with sodium hydroxide in varying concentrations (0–60% v/v) of dioxan-water mixtures at an ionic strength of 0.16 mol L-1 and at a temperature of 303 K. Ca(II), Mg(II) and Zn(II) form the binary complexes of ML2H4, ML2H3, ML2H2, ML2H and ML2 in dioxan-water mixtures. The effect of systematic errors in the concentrations of the substances on the stability constants is in the order acid > alkali > ligand > metal> Log F. The effect of solvent, dielectric constant of the medium and the electrostatic interactions between the complex species on the stability of the complexes are discussed.  相似文献   

9.
Three novel copper(II), cobalt(II), and nickel(II) complexes of lapachol (Lap) containing 110-phenanthroline (phen) ligand, [M(Lap)2(phen)] (M=Cu(II), 1, Co(II), 2, and Ni(II), 3), have been synthesized and characterized using, elemental analysis and spectroscopic studies. Their interactions with calf thymus DNA (CT DNA) were investigated using viscosity, thermal denaturation, circular dichorism, fluorescence quenching, and electronic absorption spectroscopy. The DNA cleavage abilities of 13 have been studied, where cleavage activity of copper complex 1 is more than the complexes 2 and 3. The in vitro cytotoxic potential of the complexes 1–3 against human cervical carcinoma (HeLa), human liver hepatocellular carcinoma (HepG-2), and human colorectal adenocarcinoma (HT-29) cells indicated their promising antitumor activity with quite low IC50 values in the range of .15–2.41 μM, which are lower than those of cisplatin.  相似文献   

10.
Abstract

Chemical speciation of binary complexes of Ca(II), Zn(II) and Mn(II) with L-proline is investigated pH-metrically in acetonitrile-water mixtures. The stability constants are calculated using the computer program MINIQUAD75. The best-fit chemical models are selected based on statistical parameters and residual analysis. The models for the binary species contained ML+, MLH2+and ML2H+ for Ca(II), Zn(II) and Mn(II). The trend in variation of stability constants with change in the dielectric constant of the medium is explained on the basis of structure forming nature of acetonitrile. Distribution of the species with pH at different variations (0.0-60.0% v/v) in acetonitrile-water mixtures is also presented.  相似文献   

11.
The stability constants of the ternary Cu(II), Ni(II), and Co(II) complexes containing pyridoxamine (PM) and as a second ligand (L) glycine, DL-alanine, DL-valine, and β-phenylalnine were determined by pH-metric titration in 0.50 M KNO3 at 30°C. The corresponding constants of the equilibrium, log X, are greater than would be expected for purely statistical reasons (log X = 0.6), except for few complex cases of Co(II). It has been also concluded that amino acids compete more than pyridoxamine for Ni(II) and Co(II) through the formation of 1:2:1:0 species rather than 2:1:1:0 of PM:L:M2+:H+.  相似文献   

12.
Abstract

Chemical speciation of Mg(II) and Ca(II) complexes of L-histidine in the presence of water–surfactant mixtures in the concentration range 0.0–2.5% w/v CTAB and SDS, 0.0–5.0% v/v TX-100 maintaining an ionic strength of 0.16 mol dm?3 at 303 K has been studied pH metrically. The active forms of the ligand are LH32+, LH2+, LH and L?. The models containing different numbers of species were refined by using the computer program, MINIQUAD75. The predominant species detected were ML2H44+, ML2H33+, ML2H22+, and ML2. The best fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the composition of the medium is explained on the basis of electrostatic and non-electrostatic forces. The effect of errors in the stability constants was also studied. Chemical speciation was also discussed based on the distribution diagrams.  相似文献   

13.
Formation (affinity) constants for 1:1 complexes of N-(2-acetamido)iminodiacetic acid (ADAH2) with Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) have been determined. Probable structures of the various metal chelates existing in solution are discussed. Values for the deprotonation of the amide group in [Cu(ADA)] and subsequent hydroxo complex formation are also reported. The use of ADA as a buffer is considered in terms of metal buffers complexes which can be formed at physiological pH, i.e., at pH 7.0 there is essentially no free metal ion in 1:1 M2+ to ADA solutions.  相似文献   

14.
Some new complexes of mefenamic acid with potentially interesting biological activity are described. The complexes of mefenamic acid [Mn(mef)2(H2O)2], 1, [Co(mef)2(H2O)2], 2, [Ni(mef)2(H2O)2], 3, [Cu(mef)2(H2O)]2, 4 and [Zn(mef)2], 5, were prepared by the reaction of mefenamic acid, a potent anti-inflammatory drug with metal salts. Optical and infrared spectral data of these new complexes are reported. Monomeric six-coordinated species were isolated in the solid state for Mn(II), Ni(II) and Co(II), dimeric five-coordinated for Cu(II) and monomeric four-coordinated for Zn(II). In DMF or CHCl3 solution the coordination number is retained and the coordinated molecules of water are replaced by solvent molecules. The anti-oxidant properties of the complexes were evaluated using the 1,1-diphenyl-2-picrylhydrazyl, DPPH, free radical scavenging assay. The scavenging activities of the complexes were measured and compared with those of the free drug and vitamin C. We have explored their ability to inhibit soybean lipoxygenase, β-glucuronidase and trypsin- induced proteolysis. The complex [Mn(mef)2(H2O)2] exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean lipogygenase (LOX), properties that are not demonstrated by mefenamic acid. Their inhibitory effects on rat paw edema induced by Carrageenan was studied and compared with those of mefenamic acid. The complex [Zn(mef)2] exhibited a strong inhibitory effect at 0.1 mmol/Kg B.W. (81.5 ± 1.3% inhibition), superior to the inhibition induced by mefenamic acid at the same dose (61.5 ± 2.3% inhibition). Mefenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse fibroblast L-929 cell line. The copper(II) complex displays against T24, MCF-7 and L-929 cancer cell lines, IC50 values in a μM range similar to that of the antitumor drug cis-platin and they are considered for further stages of screening in vitro and/or in vivo as agents with potential antitumor activity.  相似文献   

15.
In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, whereas for Cu(II), the corresponding value was 31.65 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudo-second-order rate kinetic model gave the best fit to the experimental data (R2 = 0.99), resulting in MSMTR values of 4.69× 10?5, 4.45× 10?6, and 1.12× 10?6 m/s for Pb(II), Cu(II), and Ni(II), respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.  相似文献   

16.
The open-chain, potentially, pentadentate, ligan 1,11-bis(dimethylamino)-3,6,9-trimethyl-3,6,9,-triazaundecane (Me7tetren) forms a series of metal complexes having the general formula [M(Me7tetren)]Y2 (Y = 1, M = Co, Ni; Y = ClO4, M = Co, Ni, Cu, Zn). On the basis of their physical properties, it is suggested that all these compounds contains isostructural five-coordinate [M(Me7tetren)]2+ cations, the ligand acting as pentadentate. These complexes react in solution with thiocyanate ion to give mono- and, with exception of copper(II), di-thiocyanato five- and six-co-ordinate derivatives. Mono-thiocyanato derivatives of cobalt(II), nickel(II) and zinc(II) have been isolated as tetraphenylborate salts. Cobalt(II) and nickel (II) di-thiocyanato derivatives have been also isolated. Results are discussed in terms of the steric requirements of the ligand and electronic properties of the metal ions.  相似文献   

17.
Abstract

Chemical speciation of Co(II), Ni(II) and Cu(II) complexes of L-valine in 0.0-60.0% v/v propylene glycol-water mixtures at an ionic strength of 0.16 mol L-1 and 303.0 K was studied pH-metrically. Models containing different number of species were refined by using the computer program MINIQUAD75. The number of species in the models was chosen based on exhaustive modelling. The best-fit chemical models were arrived at based on statistical parameters. The formation and distribution of different species with varying pH were represented in the form of distribution diagrams. Influence of the solvent on the speciation was discussed based on the dielectric constant of the medium.  相似文献   

18.
Cobalt(II), nickel(II), copper(II) and zinc(II) complexes with 2-acetylthiophene benzoylhydrazone have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, electronic, IR, NMR and ESR spectral techniques. The molecular structures of ligand and its copper(II) complex have been determined by single crystal X-ray diffraction technique. The Cu(II) complex possesses a CuN2O2 chromophore with a considerable delocalization of charge. The structure of the complex is stabilized by intermolecular π–π stacking and C–H?π interactions. Hatbh acts as a monobasic bidentate ligand in all the complexes bonding through a deprotonated C–O and >CN groups. Electronic spectral studies indicate an octahedral geometry for the Ni(II) complex while square planar geometry for the Co(II) and Cu(II) complexes. ESR spectrum of the Cu(II) complex exhibits a square planar geometry in solid and in DMSO solution. The trend g|| > g > 2.0023 indicates the presence of an unpaired electron in the dx2-y2 orbital of Cu(II). The electro-chemical study of Cu(II) complex reveals a metal based reversible redox behavior. The Ni(II) complex shows exothermic multi-step decomposition pattern of the bonded ligand. The ligand and its most of the metal complexes show appreciable corrosion inhibition properties for mild steel in 1 M HCl medium. [Co(atbh)2] complex exhibited the greatest impact on corrosion inhibition among the other compounds.  相似文献   

19.
A new series of compounds derived from thiophene-2-carboxamide were synthesized and characterized by IR, 1H-NMR and 13C-NMR, mass spectrometry and elemental analysis. These compounds were further used to prepare their Co(II), Ni(II), Cu(II) and Zn(II) metal complexes. All metal(II) complexes were air and moisture stable. Physical, spectral and analytical data have shown the Ni(II) and Cu(II) complexes to exhibit distorted square-planar and Co(II) and Zn(II) complexes tetrahedral geometries. The ligand (L1) and its Cu(II) complex were characterized by the single-crystal X-ray diffraction method. All the ligands and their metal(II) complexes were screened for their in-vitro antimicrobial activity. The antibacterial and antifungal bioactivity data showed that the metal(II) complexes were found to be more potent than the parent ligands against one or more bacterial and fungal strains.  相似文献   

20.
Chemical speciation of binary complexes of Pb(II) and Cd(II) ions with maleic acid have been studied pH metrically in the concentration range of 0–50% v/v ethylene glycol (EG)–water mixtures maintaining an ionic strength of 0.16 molL?1 at 303 K. Alkalimetric titrations were carried out in different relative concentrations of metal and maleic acid. Stability constants of various models of binary complexes were refined with MINIQUAD75. The best-fit chemical models were selected based on statistical parameters and residual analysis. The species detected are ML2, ML3, and ML2H for Pb(II) and Cd(II). The chemical speciation, metal bioavailability, and transportation are explained based on the distribution diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号