首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Swine wastewater was biologically treated to produce short-chain volatile organic acids (VOAs) in laboratory-scale continuously stirred tank reactors. The maximum production rates of acetic and butyric acids associated with simultaneous changes in pH and hydraulic retention time (HRT) were investigated, in which the degree of acidification of swine wastewater to the short-chain VOAs was <25% of influent chemical oxygen demand (COD) concentration. A constant inoculum system was used to minimize the experimental error due to the use of inconsistent inoculum. The inoculum system was operated with synthetic wastewater at 6000 mg soluble chemical oxygen demand per liter (pH 6.0) and 35 degrees C at 0.5 day hydraulic retention time. Response surface methodology was applied successfully to determine the optimum physiological condition for which the maximum rate of acetic acid production occurred, which was pH 5.90 and 0.88 day hydraulic retention time at 35 degrees C. The partial acidification process to manage swine waste should be operated in the optimum condition for acetic acid production because the optimum operating condition for butyric acid production approached the washout point.  相似文献   

2.
Up-flow anaerobic sludge blanket (UASB) reactors are being used with increasing regularity all over the world, especially in India, for a variety of wastewater treatment operations. Consequently, there is a need to develop methodologies enabling one to determine UASB reactor performance, not only for designing more efficient UASB reactors but also for predicting the performance of existing reactors under various conditions of influent wastewater flows and characteristics. This work explores the feasibility of application of an artificial neural network-based model for simulating the performance of an existing UASB reactor. Accordingly, a neural network model was designed and trained to predict the steady-state performance of a UASB reactor treating high-strength (unrefined sugar based) wastewater. The model inputs were organic loading rate, hydraulic retention time, and influent bicarbonate alkalinity. The output variables were one or more of the following, effluent substrate concentration (Se), reactor bicarbonate alkalinity, reactor pH, reactor volatile fatty acid concentration, average gas production rate, and percent methane content of the gas. Training of the neural network model was achieved using a large amount of experimentally obtained reactor performance data from the reactor mentioned above as the training set. Training was followed by validation using independent sets of performance data obtained from the same UASB reactor. Subsequently, simulations were performed using the validated neural network model to determine the impact of changes in parameters like influent chemical oxygen demand (COD) concentration and hydraulic retention time on the reactor performance. Simulation results thus obtained were carefully analyzed based on qualitative understanding of UASB process and were found to provide important insights into key variables that were responsible for influencing the working of the UASB reactor under varying input conditions.  相似文献   

3.
A novel and high‐rate anaerobic sequencing bath reactor (ASBR) process was used to evaluate the hydrogen productivity of an acid‐enriched sewage sludge microflora at a temperature of 35 °C. In this ASBR process a 4 h cycle, including feed, reaction, settle, and decant steps, was repeatedly performed in a 5 L reactor. The sucrose substrate concentration was 20 g COD/L; the hydraulic retention time (HRT) was maintained at 12–120 h at the initial period and thereafter at 4–12 h. The reaction/settle period ratio, which is the most important parameter for ASBR operation was 1.7. The experimental results indicated that the hydrogenic activity of the sludge microflora was HRT‐dependent and that proper pH control was necessary for a stable operation of the bioreactor. The peak hydrogenic activity value was attained at an HRT of 8 h and an organic loading rate of 80 kg COD/m3 × day. Each mole of sucrose in the reactor produced 2.8 mol of hydrogen and each gram of biomass produced 39 mmol of hydrogen per day. An overly‐short HRT might deteriorate the hydrogen productivity. The concentration ratios of butyric acid to’acetic acid, as well as volatile fatty acid and soluble microbial products to alkalinity can be used as monitoring indicators for the hydrogenic bioreactor.  相似文献   

4.
Synthetic wastewater consisting aliphatic acids contained in distillery wastewater from barley-shochu making was treated anaerobically. It was suggested that propionic acid was produced from lactic acid and citric acid via succinic acid. Since it appears to be difficult to treat anaerobically wastewater in which propionic acid is accumulated, we attempted to repress the production of propionic acid during acidification. The amount of propionic acid produced increased with an increase in the hydraulic retention time (HRT) at pH 7. Although the treatment was examined using different pHs at a shorter HRT of 10 h, it was difficult to repress the production of propionic acid.  相似文献   

5.
固定载体卧式厌氧反应器处理糖蜜废水的快速启动   总被引:1,自引:0,他引:1  
为高效处理高浓度有机废水而设计了固定载体卧式厌氧反应器R1和R2, 它是厌氧折流板反应器(ABR)的改进, 以活性炭纤维作为生物膜载体固定并充当反应器的折流板, 在实验室规模上对R1和R2处理糖蜜废水进行快速启动运行。HRT和ORL是影响R1和R2稳定高效运行及启动的2个重要工艺参数。实验证明: HRT为2 d时, 反应器运行最佳。在第30天时, R1的COD去除率达到84.88%, R2达到81.72%。随着进水ORL由1.25 kg/(m3·d)提升到10 kg/(m3·d), 沼气容积产气率由0.35 L/(L·d)逐渐增加到4.98 L/(L·d)。进水pH值为3.9?4.5之间, 整个启动运行过程中, 未调节pH值, R1和R2的出水pH值均在6.7?7.6之间, 2个反应器均有较强的抗酸能力, R1的pH波动更为平缓。在整个实验过程中, 污泥流失量小, 没有发生堵塞现象, 在处理酸性高浓度有机废水时, 2个反应器均表现出较强的抗负荷冲击能力。  相似文献   

6.
The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.  相似文献   

7.
A pilot-scale test was conducted in a submerged membrane bioreactor (SMBR) for 452 days to treat high-strength traditional Chinese medicine wastewater from two-phase anaerobic digest effluent. This study focuses on the effects of operational parameters on effluent quality of a SMBR. The parameters include shorter hydraulic retention time (HRT), higher influent COD concentration, higher COD loading rate and mixed liquor suspended solids (MLSS). The experimental results demonstrated that when HRT was 5 h and the influent COD was less than 3000 mg L−1, the effluent quality of the SMBR evaluated from its COD content (CODfilt) could meet the accepted Chinese standards for water reclamation; when HRT was 3.2 h and the influent COD was less than 3000 mg L −1, or HRT was 5 h and the influent COD fluctuated between 3000 and 6000 mg L−1, the effluent quality of the SMBR could meet the normal Chinese discharged standard. Statistical analyses showed that CODfilt correlated positively with the COD loading rate. It correlated negatively with the MLSS for MLSS values between 7543 and 13 694 mg L−1. When MLSS was >13 694 mg L−1 it correlated positively with CODfilt. Based on experimental values from SMBR and on values predicted by a simulation model generated using the back propagation neural network (BPNN) theory, the optimum operational parameters for the treatment of a high-strength TCM wastewater were as follows: HRT was 5 h, SRT was 100 day, COD loading rate was<20.5 kg m−3 d−1, the range of MLSS was 7543–13 694 mg L−1.  相似文献   

8.
The anaerobic biodegradation of carbon tetrachloride (CT) was investigated during the granulation process by reducing the hydraulic retention time, increasing the chemical oxygen demand (COD) and CT loadings in a 2l laboratory-scale upflow anaerobic sludge blanket (UASB) reactor. Anaerobic unacclimated sludge and glucose were used as seed and primary substrate, respectively. Granules were developed 4 weeks after start-up, which grew at an accelerated rate for 8 months, and then became fully grown. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to biomass ratio and specific methanogenic activity (SMA) were also considered during granulation. The granular sludge cultivated had a maximum diameter of 2.1 mm and SMA of 1.6 g COD/g total suspended solid (TSS) day. COD and CT removal efficiencies of 92 and 88% were achieved when the reactor was firstly operating at CT and COD loading rates of 17.5 mg/l day and 12.5 g/l day, respectively. This corresponds to hydraulic retention time of 0.28 day and food to biomass ratio of 0.5 g COD/g TSS day. Kinetic coefficients of maximum specific substrate utilization rate, half velocity coefficient, growth yield coefficient and decay coefficient were determined to be 2.4 × 10–3 mg CT/TSS day–1, 1.37 mg CT/l, 0.69 mg TSS/mg CT and 0.046 day–1, respectively for CT biotransformation during granulation.  相似文献   

9.
Volatile Fatty Acids (VFA) production by anaerobic fermentation of organic solid wastes was studied at laboratory scale. The influence of initial substrate concentration was evaluated on VFA production. Completely mixed reactors (0.9?l) were used at mesophilic temperature (35?°C). Food wastes had 43.8% Total Solids content. Three dilutions of substrate (1/25, 1/10 and 1/5) corresponding to 1.75%, 4.38% and 8.76% of Total Solids and five values of Organic Loading Rates: 2, 5, 10, 12.5 and 25?kg COD/m3?d were studied. It was found that substrate 1/10 led to 14?g VFA/l at a loading rate of 12.5?kg COD/m3?d and an hydraulic retention time of 3.7 d. The main VFA produced were especially acetate and butyrate. Substrate diluted 1/5 led to 26.1?g VFA/l at a loading of 5?kg COD/m3?d and an hydraulic retention time of 15.1 d, but biomass production was not optimal. In a second study, a cascade of three reactors was used. An effluent with 42?g VFA/l was obtained at steady-state conditions at a loading of 12.5?kg of COD/m3?d and an hydraulic retention time of 12.5?d. The distribution of VFA was the following: 36% of propionate, 34% of acetate and 22.5% of butyrate.  相似文献   

10.
Summary A synthetic medium containing 9 g/l sucrose was hydrolyzed in a novel hybrid reactor. A minimum hydraulic retention time (HRT) of 9.9 h, with a gas production rate of 1.07 m3/m3·d, was obtained without continuous neutralization. A viable anaerobic cell count of 109 organisms/ml was obtained in the reactor fluid. The results showed that both pH and temperature significantly influenced the type and concentration of the various metabolites formed. These include ethanol, formic, acetic, propionic and butyric acids as primary metabolites and caproic acid as secondary metabolite. From the results obtained, it is suggested that to obtain the energetically most favourable products, a substrate pH of 6.5 and a temperature of 35°C must be used in anaerobic acidogenic digesters.  相似文献   

11.
Biomethanation under psychrophilic conditions: a review   总被引:9,自引:0,他引:9  
Anaerobic digestion of animal manure, sewage and other agricultural wastes at psychrophilic temperatures has not been explored as extensively as either mesophilic or thermophilic digestion, probably due to little anticipation of the development of economically attractive systems using this technology. This review article discusses psychrophilic anaerobic digestion studies reported by various researchers using different substrates. The effect of operational parameters such as type of substrate, size of inoculum, concentration of volatile fatty acids, hydraulic retention time and loading rate, on reduction of TS/VS, BOD/COD and biogas yield is discussed in detail.  相似文献   

12.
Chen ZB  Cui MH  Ren NQ  Chen ZQ  Wang HC  Nie SK 《Bioresource technology》2011,102(19):8839-8847
The aim of this study was to implement central-composite design (CCD) and response surface methodology (RSM) to optimize the operational parameters for hybrid anaerobic baffled microbial reactor (HABMR) remedying mixed printing and dyeing wastewater (MPDW). The individual and interactive effects of three variables, hydraulic retention time (HRT), pH, sludge loading rate (SLR) on the COD and color removal rates were evaluated. In the area of HRT: 12.5-13.9 h, pH: 9.0-9.5 and SLR: 0.27-0.33 kg COD/(kg MLVSSd), COD and color removal rates of HABMR exceeded 40% and 60%, simultaneously. The check experiment revealed that the amount of COD and color in the effluent could be decreased by 9.97% and 10.12% compared to the usual operating conditions, respectively. The results verified that the RSM was useful for optimizing the operational parameters of HABMR in treating MPDW.  相似文献   

13.
Won SG  Lau AK 《Bioresource technology》2011,102(13):6876-6883
In this study, a series of tests were conducted in a 6 L anaerobic sequencing batch reactor (ASBR) to investigate the effect of pH, hydraulic retention time (HRT) and organic loading rate on biohydrogen production at 28 °C. Sucrose was used as the main substrate to mimic carbohydrate-rich wastewater and inoculum was prepared from anaerobic digested sludge without pretreatment. The reactor was operated initially with nitrogen sparging to form anaerobic condition. Results showed that methanogens were effectively suppressed. The optimum pH value would vary depending on the HRT. Maximum hydrogen production rate and yield of 3.04 L H2/L reactor d and 2.16 mol H2/mol hexose respectively were achieved at pH 4.5, HRT 30 h, and OLR 11.0 kg/m3 d. Two relationships involving the propionic acid/acetic acid ratio and ethanol/acetic acid ratio were derived from the analysis of the metabolites of fermentation. Ethanol/acetic acid ratio of 1.25 was found to be a threshold value for higher hydrogen production.  相似文献   

14.
A lab-scale investigation was conducted to examine the effectiveness of a multi-fed upflow anaerobic filter process for the methane production from a rice winery effluent at ambient temperatures. The experiment was carried in two identical 3.0-l upflow filters, a single-fed reactor and a multi-fed reactor. The results showed that the multi-fed reactor, operated at the ambient temperatures of 19–27 °C and influent chemical oxygen demand (COD) of 8.34–25.76 g/l, could remove over 82% of COD even at an organic loading rate (OLR) of 37.68 g-COD/l d and a short hydraulic retention time (HRT) of 8 h. This reactor produced biogas with a methane yield of 0.30–0.35 l-CH4/g-CODremoved. The multi-fed upflow anaerobic filter was proved to be more efficient than the single-fed reactor in terms of COD removal efficiency and stability against hydraulic loading shocks. A linear-regression model with influent COD concentration and HRT terms adequately described the multi-fed upflow anaerobic filter system for the treatment of rice winery wastewater at ambient temperatures.  相似文献   

15.
Two-phase anaerobic digestion of cheese whey was investigated in a system consisting of a stirred acidogenic reactor followed by a stirred methanogenic reactor, the latter being coupled to a membrane filtration system to enable removal of soluble effluent whilst retaining solids. The acidogenic reactor was operated at a hydraulic retention time (HRT) of one day, giving maximum acidification of 52.25% with up to 5 g/l volatile fatty acids, of which 63.7% was acetic acid and 24.7% was propionic acid. The methanogenic reactor received an organic load up to 19.78 g COD/ld, corresponding to a HRT of 4 days, at which 79% CODs and 83% BOD(5) removal efficiencies were obtained. Average removals of COD, BOD(5) and TSS in the two-phase anaerobic digestion process were 98.5%, 99% and 100%, respectively. The daily biogas production exceeded 10 times reactor volume and biogas methane content was greater than 70%.  相似文献   

16.
Summary The internal pH of Saccharomyces cerevisiae IGC 3507 III (a respiratory-deficient mutant) was measured by the distribution of [14C]propionic acid, when the yeast was fermenting glucose at pH 3.5, 4.5 and 5.5 in the presence of several concentrations of acetic acid and ethanol. Good correlation was obtained between fermentation rates and internal pH. For all external pH values tested, the internal pH was 7.0–7.2 in the absence of inhibitors. The addition of acetic acid and/or ethanol resulted in a decrease of fermentation rate together with a drop in internal pH. Internal pH did not depend on the concentration of total external acetic acid but only on the concentration of the undissociated form of the acid. Ethanol potentiated the effect of acetic acid both with respect to inhibition of fermentation and internal acidification.  相似文献   

17.
The aim of the study was to implement a mathematical model to simulate two-phase anaerobic digestion (TPAD) process which consisted of an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) reactor in series treating traditional Chinese medicine (TCM) wastewater. A model was built on the basis of Anaerobic Digestion Model No. 1 (ADM1) while considering complete mixing model for the CSTR, and axial direction discrete model and mixed series connection model for the UASB. The mathematical model was implemented with the simulation software package MATLABTM/Simulinks. System performance, in terms of COD removal, volatile fatty acids (VFA) accumulation and pH fluctuation, was simulated and compared with the measured values. The simulation results indicated that the model built was able to well predict the COD removal rate (−4.8–5.0%) and pH variation (−2.9–1.4%) of the UASB reactor, while failed to simulate the CSTR performance. Comparing to the measured results, the simulated acetic acid concentration of the CSTR effluent was underpredicted with a deviation ratios of 13.8–23.2%, resulting in an underprediction of total VFA and COD concentrations despite good estimation of propionic acid, butyric acid and valeric acid. It is presumed that ethanol present in the raw wastewater was converted into acetic acid during the acidification process, which was not considered by the model. Additionally, due to the underprediction of acetic acid the pH of CSTR effluent was overestimated.  相似文献   

18.
Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor   总被引:46,自引:0,他引:46  
It has been found, in this study, that a new ethanol-type fermentation can be obtained in a continuous flow, high-rate acidogenic reactor receiving molasses as the feed. The operating pH must be maintained at about 4.5 to avoid onset of propionic fermentation. The acidogenic reactor had a VSS level of 20 g/L and its organic loading was as high as 80 to 90 kg COD/m(3) d. The operating ORP was around -250 mV. The ethanol-type fermentation was characterized by a simultaneous production of acetic acid and ethanol, while the yield of propionic was minimal even at a high organic loading rate of 80 to 90 kg COD/m(3) d, and also, the hydrogen partial pressure was as high as 50 kPa. Thus, this study has shown that the production of propionic acid is not always related to high hydrogen partial pressure. When the operating pH was increased to 5.5, the yield of propionic acid became significant. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 428-433, 1997.  相似文献   

19.
This article describes a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. Enrichment was obtained through the selective pressure established by feeding the carbon source in a periodic mode (feast and famine regime) in a sequencing batch reactor. A concentrated mixture of acetic, lactic, and propionic acids (overall concentration of 8.5 gCOD L(-1)) was fed every 2 h at 1 day(-1) overall dilution rate. Even at such high organic load (8.5 gCOD L(-1) day(-1)), the selective pressure due to periodic feeding was effective in obtaining a biomass with a storage ability much higher than activated sludges. The immediate biomass response to substrate excess (as determined thorough short-term batch tests) was characterized by a storage rate and yield of 649 mgPHA (as COD) g biomass (as COD)(-1) h(-1) and 0.45 mgPHA (as COD) mg removed substrates (as COD(-1)), respectively. When the substrate excess was present for more than 2 h (long-term batch tests), the storage rate and yield decreased, whereas growth rate and yield significantly increased due to biomass adaptation. A maximum polymer fraction in the biomass was therefore obtained at about 50% (on COD basis). As for the PHA composition, the copolymer poly(beta-hydroxybutyrate/beta-hydroxyvalerate) with 31% of hydroxyvalerate monomer was produced from the substrate mixture. Comparison of the tests with individual and mixed substrates seemed to indicate that, on removing the substrate mixture for copolymer production, propionic acid was fully utilized to produce propionylCoA, whereas the acetylCoA was fully provided by acetic and lactic acid.  相似文献   

20.
Investigations were carried out by using rigid polyurethane foam as a packing material in the anaerobic contact filter (series) to treat distillery spentwash. The effect of hydraulic retention time (HRT) in treatment efficiency of reactor (I) and (II) was evaluated at different initial substrate concentrations ranging from 1500 mg/l to 19,000 mg/l. The effect of toxic parameters such as sulphate present in the distillery spentwash and the corresponding parameters such as total sulphide and un-ionized hydrogen sulphide generated during digestion of wastewater were evaluated to assess the reactor performance. The results showed that at 4 d HRT the overall COD removal percent ranged from 98% to 73% for an influent COD of 1500 mg/l to 19,000 mg/l. The overall performance of COD removal percent in reactor (I) and (II) at 2, 3 and 4 d HRT's were investigated. At 3 d HRT the reactor (II) showed a higher COD removal percent when compared to reactor (I), which clearly shows the role of hydraulic retention time in degradation of the organic matter present in the wastewater above an influent COD concentration of 5000 mg/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号