首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The caudal peduncle and caudal fin of Carcharodon carcharias together form a dynamic locomotory structure. The caudal peduncle is a highly modified, dorsoventrally compressed and rigid structure that facilitates the oscillations of the caudal fin. Its stiffness appears to be principally achieved by a thick layer of adipose tissue ranging from 28-37% of its cross-sectional area, reinforced by cross-woven collagen fibers. Numerous overlying layers of collagen fibers of the stratum compactum, oriented in steep left- and right-handed helices (approximately 65 degrees to the shark's long axis), prevent bowstringing of the perimysial fibers, which lie just below the dermal layer. Perimysial fibers, muscles, and the notochord are restricted to the dorsal lobe of the caudal fin and comprise the bulk of its mass. Adipose tissue reinforces the leading edge of the dorsal lobe of the caudal fin and contributes to maintaining the ideal cross-sectional geometry required of an advanced hydrofoil. Most of the mass of the ventral lobe consists of the ceratotrichia or fin rays separated by thin partitions of connective tissue. Dermal fibers of the stratum compactum of the dorsal lobe occur in numerous distinct layers. The layers are more complex than in other sharks and appear to reflect a hierarchical development in C. carcharias. The fiber layer comprises a number of thick fiber bundles along the height of the layer and the layers get thicker deeper into the stratum compactum. Each of these layers alternates with a layer a single fiber-bundle deep, a formation thought to give stability to the stratum compactum and to enable freer movements of the fiber system. In tangential sections of the stratum compactum the fiber bundles in the dorsal lobe can be seen oriented with respect to the long axis of the shark at approximately 55-60 degrees in left- and right-handed helices. Because of the backward sweep of the dorsal lobe (approximately 55 degrees to the shark's long axis) the right-handed fibers also parallel the lobe's long axis. In the dorsal lobe, ceratotrichia are present only along the leading edge (embedded within connective tissue), apparently as reinforcement. Stratum compactum fiber bundles of the ventral lobe, viewed in transverse section, lack the well-ordered distinctive layers of the dorsal lobe, but rather occur as irregularly arranged masses of tightly compacted fiber bundles of various sizes. In tangential sections the fiber bundles are oriented at angles of approximately 60 degrees, generally in one direction, i.e., lacking the left- and right-handed helical pattern. Tensile load tests on the caudal fin indicate high passive resistance to bending by the skin. The shear modulus G showed that the skin's contribution to stiffness (average values from three specimens at radians 0.52 and 1.05) is 33.5% for the dorsal lobe and 41.8% for the ventral. The load tests also indicate greater bending stiffness of the ventral lobe compared to the dorsal. Overall, the anatomy and mechanics of the dorsal lobe of C. carcharias facilitate greater control of movement compared to the ventral lobe. The helical fiber architecture near the surface of the caudal fin is analogous to strengthening of a thin cylinder in engineering. High fiber angles along the span of the dorsal lobe are considered ideal for resisting the bending stresses that the lobe is subjected to during the locomotory beat cycle. They are also ideal for storing strain energy during bending of the lobe and consequently may be of value in facilitating the recovery stroke. The complex fiber architecture of the caudal fin and caudal peduncle of C. carcharias provides considerable potential for an elastic mechanism in the animal's swimming motions and consequently for energy conservation.  相似文献   

2.
In the mammalian testis, peritubular myoid cells (PM cells) surround the seminiferous tubules (STs), express cytoskeletal markers of true smooth muscle cells, and participate in the contraction of the ST. It has been claimed that PM cells contain bundles of actin filaments distributed orthogonally in an intermingled mesh. Our hypothesis is that these actin filaments are not forming a random intermingled mesh, but are actually arranged in contractile filaments in independent layers. The aim of this study is to describe the organization of the actin cytoskeleton in PM cells from adult rat testes and its changes during endothelin-1-induced ST contraction. For this purpose, we isolated segments of ST corresponding to the stages IX-X of the spermatogenic cycle (ST segments), and analyzed the actin and myosin filament distribution by confocal and transmission electron microscopy. We found that PM cells have actin and myosin filaments interconnected in thick bundles (AF-MyF bundles). These AF-MyF bundles are distributed in two independent layers: an inner layer toward the seminiferous epithelium, and an outer layer toward the interstitium, with the bundles oriented perpendicularly and in parallel to the main ST axis, respectively. In endothelin-1 contracted ST segments, PM cells increased their thickness and reduced their length in both directions, parallel and perpendicular to the main ST axis. The AF-MyF bundles maintained the same organization in two layers, although both layers appeared significantly thicker. We believe that this is the first time this arrangement of AF-MyF bundles in two independent layers has been shown in smooth muscle cells, and that this organization would allow the cell to generate contractile force in two directions.  相似文献   

3.
The epidermal setae and the spinules of the digital lamellae of anoline and gekkonid lizards are shed periodically along with the rest of the outer layer of the skin. These structures are developed within the lamellae prior to ecdysis. The setae are larger and more complicated than the spinules and begin their development first. The setae of Anolis start as aggregations of tonofibrils beneath the plasma membrane of the presumptive Oberhautchen cells. These cells are arranged in rows parallel to the surface, several cell layers beneath the alpha layer of the skin. The developing setae protrude into the clear layer cells as finger-like projections, with the tonofibrils longitudinally oriented in the direction of growth. About 100 setae are formed by each Oberhautchen cells in Anolis. In late development, the clear layer cells lose their cellular contents and when shed along with all distal cells, retain a template of the new setae or spinules. The spinules and setae are formed before the fibrous and alpha layers of the new skin. The fibrous layer, which occurs only on the ventral (outer) layer of the lamellae, and the Oberhautchen with its setae and spinules, is considered the beta layer. The alpha layer, which occurs adjacent to the fibrous layer on the ventral surface and adjacent to the Oberhautchen on the dorsal (inner) surface, is morphologically identical to that of mammalian α keratin. The shed lizard skin consists of the alpha and beta layers as well as the degenerating cells of the outer epidermal generation, and the clear layer. The clear layer that is shed shows the template of the new setae and spinules developed in the new skin layer. The separation of the new from the old skin occurs along the intercellular space between the clear layer cells and the new Oberhautchen. The alpha layer of the skin is not fully keratinized at shedding. The setae of the digital lamellae of lizards represent unique epidermal structures — intracellular keratinized microstructures.  相似文献   

4.
The legless locomotion of snakes requires specific adaptations of their ventral scales to maintain friction force in different directions. The skin microornamentation of the snake Corallus hortulanus was studied by means of scanning electron microscopy and the friction properties of the skin were tested on substrates of different roughness. Skin samples from various parts of the body (dorsal, lateral, ventral) were compared. Dorsal and lateral scales showed similar, net-like microornamentation and similar friction coefficients. Average friction coefficients for dorsal and lateral scales on the epoxy resin surfaces were 0.331 and 0.323, respectively. In contrast, ventral scales possess ridges running parallel to the longitudinal body axis. They demonstrated a significantly lower friction coefficient compared to both dorsal and lateral scales (0.191 on average). In addition, ventral scales showed frictional anisotropy comparing longitudinal and perpendicular direction of the ridges. This study clearly demonstrates that different skin microstructure is responsible for different frictional properties in different body regions.  相似文献   

5.
After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24—25 nm periodic structural repeat alone the axis of beth the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.  相似文献   

6.
1. The presumptive cortical cells of hair in the undifferentiated matrix of the bulb contain mitochondria, agranular vesicles, and many small dense R.N.P. particles, but no keratin, pigment granules, or endoplasmic reticulum. 2. In the mid-bulb region intercellular adhesion is limited to small localised areas. Intercellular gaps are common and the cell surfaces are irregularly convoluted. The melanocyte processes penetrate the cell gaps. The relation between their pigment-bearing tips and the involutions of the cell membranes suggests an active phagocytosis of the tips. 3. Fibrous keratin first appears in loose parallel strands of fine filaments (ca. 60 A diameter) in the mid-bulb. The filaments, the long mitochondria, and elongated nucleus are all parallel to the long axis of the cell and the axis of the follicle. 4. At the level of the constriction of the bulb and above, a dense amorphous substance appears between the fine filaments and apparently acts as adhesive cement. The bundles of filaments now form well defined fibrils. The packing of the filaments within the fibrils is in places hexagonal and elsewhere in the form of "whorls." 5. At higher levels further filaments and interfilamentous cement are added together and the whole cytoplasmic space becomes packed with fibrils which finally condense to massive blocks of keratin. The residual cellular material occupies the interstices. 6. The addition of the interfilamentous substance is regarded as an essential factor in keratinisation. Keratin is considered to be a complex made of fine filaments (alpha-filaments) embedded in an amorphous substance (gamma-keratin) which has the higher cystine content. 7. The wide-angle fibre-type x-ray pattern is thought to be due to scattering by the fine alpha-filaments and some low angle lateral spacings to the filament-plus-cement structure.  相似文献   

7.
Fine structure of the honeybee Z-disc   总被引:1,自引:0,他引:1  
Z-discs from the dorsal longitudinal indirect flight muscles of the honeybee (Apis mellifera) are perforated with hundreds of triangular-shaped tubes ordered into an hexagonal array. Each tube is surrounded by 80 Å thick rims which incorporate six thin filaments, three from each bordering sarcomere. Although the triangular rims of the tubes are oriented identically in any plane perpendicular to the fibril axis, this orientation changes as the tubes cross the Z-line. The tubes rotate approximately 60 ° about an axis parallel to that of the fibril in passing from one I-Z junction to another.On the basis of filament counting in the A (overlap zone) and I bands of stretched myofibrils, it is concluded that the primary filaments are physically continuous with the Z-lines by material which appears to participate both in the formation of Z-rim substance and the surrounding matrix.Finally, evidence is presented to support the view that filament lattices of adjacent sarcomeres are displaced from one another, so that each thick filament faces the trigonal position of three thick filaments on the other side of the Z-disc.  相似文献   

8.
After selective extraction and purification, plant keratin intermediate filaments were reassembledin vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filamentsin vitro. In higher mcation images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24–25 nm periodic structural repeat alone the axis of both the 10 nm filaments and protofilarnents. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.  相似文献   

9.
An arrangement of paramyosin molecules in the polar part of molluscan thick filaments is proposed which accounts for the X-ray diffraction pattern of the smooth adductor muscle (other than the part ascribed to actin) and for the appearance of separated filaments in the electron microscope. The proposed structure is based on the PI arrangement of Cohen et al. (1971), and contains sets of parallel, equidistant molecules with successive molecules displaced along the molecular axis by 72 nm, which we call PI sheets. Every molecule belongs to two PI sheets which are nearly perpendicular. This array is not propagated throughout the filament, but is sheared periodically in the direction of the molecular (filament) axis by 2/5 X 72 nm. The shear occurs along parallel equidistant planes which are inclined to the PI sheets. The analysis of the X-ray data has been made possible by concentrating on those patterns from filaments in which the two sets of PI sheets appear to be mutually perpendicular, a condition brought about by bathing the muscle in aqueous acetone. In one set, there are four intermolecular spaces between shear planes (this appears to be true at least for the smooth adductors of Ostrea edulis, Crassostrea angulata and Mercenaria mercenaria). In the other set, the number varies with species and probably lies between eight and ten in the first two and appears to be six in the last named species. The known paracrystalline nature of paramyosin filaments suggests that this number, though dominant in one species, is not exactly constant.  相似文献   

10.
Cornification of developing claws in the brush possum has been analysed by electron microscopy and compared with the process in other tetrapods. Newborns from 3 to 60 days postparturition were studied. After formation of symmetric and round outgrowth in digits the epidermis becomes thicker in the dorsal with respect to the ventral digit tip. The claw elongates forming the unguis and a shorter subunguis. Spinosus keratinocytes in both unguis and subunguis accumulate tonofilaments that fill their cytoplasm. Keratohyaline‐like granules are formed in early stages of differentiation in both unguis and subunguis but they later disappear in highly cornified corneocytes. Tonofilaments become electron‐dense in keratinocytes of the precorneous layer in the large corneocytes of the unguis and in narrow corneocytes of the subunguis. Keratin bundles transform into an amorphous corneous material that embeds or masks the original keratin intermediate filaments. Nucleated corneocytes are accumulated in the unguis while thinner corneocytes are present in the subunguis. The latter contain a dense material, possibly containing high sulphur keratin associated proteins, as occurs during cornifcation of the cortex and cuticle hair cells and in the nail. The process of cornification of mammalian claws is compared with that of reptilian and avian claws.  相似文献   

11.
1. The presumptive cortical cells of hair in the undifferentiated matrix of the bulb contain mitochondria, agranular vesicles, and many small dense R.N.P. particles, but no keratin, pigment granules, or endoplasmic reticulum. 2. In the mid-bulb region intercellular adhesion is limited to small localised areas. Intercellular gaps are common and the cell surfaces are irregularly convoluted. The melanocyte processes penetrate the cell gaps. The relation between their pigment-bearing tips and the involutions of the cell membranes suggests an active phagocytosis of the tips. 3. Fibrous keratin first appears in loose parallel strands of fine filaments (ca. 60 A diameter) in the mid-bulb. The filaments, the long mitochondria, and elongated nucleus are all parallel to the long axis of the cell and the axis of the follicle. 4. At the level of the constriction of the bulb and above, a dense amorphous substance appears between the fine filaments and apparently acts as adhesive cement. The bundles of filaments now form well defined fibrils. The packing of the filaments within the fibrils is in places hexagonal and elsewhere in the form of "whorls." 5. At higher levels further filaments and interfilamentous cement are added together and the whole cytoplasmic space becomes packed with fibrils which finally condense to massive blocks of keratin. The residual cellular material occupies the interstices. 6. The addition of the interfilamentous substance is regarded as an essential factor in keratinisation. Keratin is considered to be a complex made of fine filaments (α-filaments) embedded in an amorphous substance (γ-keratin) which has the higher cystine content. 7. The wide-angle fibre-type x-ray pattern is thought to be due to scattering by the fine α-filaments and some low angle lateral spacings to the filament-plus-cement structure.  相似文献   

12.
After selective extraction and purification, plant keratin intermediate filaments were reassembledin vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filamentsin vitro. In higher mcation images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24–25 nm periodic structural repeat alone the axis of both the 10 nm filaments and protofilarnents. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments. Project supported by the National Natural Science Foundation of China (Grant No. 39370352) and the Doctor Foundation of Minishy of Education of China.  相似文献   

13.
Nuclear change in relation to axis formation and condensation during spermiogenesis was investigated in the snail, Physa acuta. In the early spermatid, characteristic thick layers (termed apical and basal plates) are formed on two sides of a nuclear envelope. Soon after the formation of these plates, a developing acrosome and a flagellum attach externally to the center of the apical and basal plates, respectively. However, most (presumably all) of the chromatin filaments become attached all over the inner surface of the apical and basal plates. This means that the plates themselves are actually the specialized forms of the nuclear envelope to which chromatin filaments become connected; by means of these plates, the chromatin filaments become arranged in parallel to the antero-posterior axis as the nucleus elongates. This suggests that the formation of these two thick layers on opposing surfaces of the nucleus primarily determines the antero-posterior axis of the spermatid and the direction of the arrangement of chromatin.
The flattening of the nucleus prior to elongation is caused mainly by the enlargement of the basal plate. Subsequent nuclear shaping and condensation are discussed in relation to the change in the surface structures of the nucleus and the organization of the microtubules.  相似文献   

14.
Summary Keratin filaments of epithelial- and taste-bud cells in the circumvallate papillae of adult and developing mice were studied by immunocytochemistry using monoclonal antikeratin antibodies (PKK2 and PKK3) and by conventional electron microscopy. Elongated cells (type-I,-II, and-III cells) of the taste buds were stained by PKK3 antibody, which reacts with 45-kdalton keratin, whereas basal cells of the taste buds and surrounding epithelial cells showed negative staining with PKK3. Such PKK3-reactive cells occurred at 0 day after birth, when taste-buds first appeared in the dorsal surface epithelium of the papillae. Thus 45-kdalton keratin seems to be an excellent immunocytochemical marker for identifying taste-bud cells. Epithelial cells in all layers of the trench wall and basal layer cells of the dorsal surface contained densely aggregated bundles of keratin filaments that reacted with PKK2 antibody, but not with PKK3. In contrast, taste-bud cells and spinous and granular layer cells of the dorsal surface possessed loose aggregated bundles of filaments that reacted with PKK3, but not with PKK2. These results suggest that the aggregation and distribution pattern of keratin filaments may reflect differences in the keratin subtypes that comprise these filaments.  相似文献   

15.
Mechanical tension influences tissue morphogenesis and the synthetic, mitotic, and motile behavior of cells. To determine the effects of tension on epithelial motility and cytoskeletal organization, small, motile clusters of epidermal cells were artificially extended with a micromanipulated needle. Protrusive activity perpendicular to the axis of tension was dramatically suppressed. To determine the ultrastructural basis for this phenomenon, cells whose exact locomotive behavior was recorded cinemicrographically were examined by transmission electron microscopy. In untensed, forward-moving lamellar protrusions, microfilaments appear disorganized and anisotropically oriented. But in cytoplasm held under tension by micromanipulation or by the locomotive activity of other cells within the epithelium, microfilaments are aligned parallel to the tension. In non-spreading regions of the epithelial margin, microfilaments lie in tight bundles parallel to apparent lines of tension. Thus, it appears that tension causes alignment of microfilaments. In contrast, intermediate filaments are excluded from motile protrusions, being confined to the thicker, more central part of the cell. They roughly follow the contours of the cell, but are not aligned relative to tension even when microfilaments in the same cell are. This suggests that the organization of intermediate filaments is relatively resistant to physical distortion and the intermediate filaments may act as passive structural support within the cell. The alignment of microfilaments under tension suggests a mechanism by which tension suppresses protrusive activity: microfilaments aligned by forces exerted through filament-surface or filament-filament interconnections cannot reorient against such force and so cannot easily extend protrusions in directions not parallel to tension.  相似文献   

16.
Epithelium in the nail matrix is different from that at other body sites, in terms of clinical and histological appearance. Hard keratins are exclusively expressed in the nail matrix and bed and the hair apparatus, and hard keratin is considered a differentiation marker of these sites. Whether the expression of hard keratin in non-nail-matrical keratinocytes could be induced by nail-matrical fibroblasts was examined. Skin equivalents were constructed in three ways; ventral keratinocytes (from the ventral side of the digit) were cocultured with ventral fibroblasts (group A), ventral keratinocytes were cocultured with nail-matrical fibroblasts (group B), and nail-matrical keratinocytes were cocultured with ventral fibroblasts (group C). Immunohistochemical examinations with anti-hard keratin antibody (HKN-7) revealed hard keratin expression in groups B and C. HKN-7-positive cells were distributed continuously in the entire epithelial strata or in the suprabasal layer in group B, whereas HKN-7-positive cells were distributed spottily in group C. This study indicates extrinsic hard keratin induction in non-nail-matrical keratinocytes by nail-matrical fibroblasts and suggests that non-nail-matrical epidermal grafts may be effective in the treatment of deepithelized nail injuries. In addition, it is possible that lost nails could be reconstructed with grafts of "tissue-engineered" nail equivalent.  相似文献   

17.
An orientation of hydroxyapatite (HAP) crystals in bovine femur mineral was investigated by means of X-ray pole figure analysis (XPFA). It was found that the c-axis of HAP generally orients parallel to the longitudinal axis of bone (bone axis) and a significant amount of c-axis was oriented in other directions, in particular, perpendicular to the bone axis. Comparing these results with those of the small angle X-ray scattering (SAXS) investigation by Matsushima et al. (Jap. J. appl. Phys. 21, 186-189, 1982) at least two types of morphology of bone mineral were found; rod like bone mineral having the c-axis of HAP crystal parallel to the longitudinal axis of the rod and that having the c-axis not parallel, in a particular case, perpendicular to its longitudinal axis. Transverse anisotropy in mechanical properties of bone was reproduced by the estimation of Young's moduli by using the structural results mainly from XPFA. It is concluded that the anisotropy in mechanical properties of bone is well explained by taking account of the non-longitudinal (off-bone) axial distribution of orientation of bone mineral.  相似文献   

18.
We describe the morphology of toe pads in the Himalayan tree frog Philautus annandalii. These are expanded tips of digits and show modifications of their ventral epidermis for adhesion. The outer cells of toe pad epidermis (TPE) bear surface microstructures (0.7 × 0.2 μm), which are keratinized. Their cytoplasm contains no organelles, but pleomorphic nuclei and mucous granules (0.4–0.5 μm) that glue the keratin filaments. In the intermediate cell layer of TPE, similar keratinized microstructures as in the outer cells are present, so that when the outer layer is shed, it is ready with features for adhesion. These cells contain more keratin than the outer cells. The basal cell layer contains thin keratin bundles and usual cell organelles. The dermis contains mucous‐secreting glands, whose ducts open in the outer epidermal cell layer in channels. The dorsal epidermal cells lack surface microstructures and keratin bundles. Ultrastructural features suggest that toe pads utilize the surface microstructures for adhesion aided by mucus, in which the intermediate cell layer seems to bear the shear stress generated during locomotion. Further, TPE can expand and fit into an increased contact area of the substrate. The long, surface microstructures may also help in mechanical interlocking with rough surfaces on plants.  相似文献   

19.
Bivalve nacre is a brick-wall-patterned biocomposite of aragonite platelets surrounded by organic matter. SEM-electron back scatter diffraction analysis of nacre of the bivalve family Pteriidae reveals that early aragonite crystals grow with their c-axes oriented perpendicular to the growth surface but have their a- and b-axes disoriented. With the accumulation of successive lamellae, crystals progressively orient themselves with their b-axes mutually parallel and towards the growth direction. We propose that progressive orientation is a result of competition between nacre crystals at the growth front of lamellae, which favours selection of crystals whose fastest growth axis (b-axis) is oriented parallel to the direction of propagation of the lamella. A theoretical model has been developed, which simulates competition of rhombic plates at the lamellar growth front as well as epitaxial growth of crystals onto those of the preceding lamella. The model predicts that disordered nacre progressively produces bivalve-like oriented nacre. As growth fronts become diffuse (as is the common case in bivalves) it takes longer for nacre to become organized. Formation of microdomains of nacre platelets with different orientations is also reproduced. In conclusion, not only the organic matrix component, but also the mineral phase plays an active role in organizing the final microstructure.  相似文献   

20.
成年大鼠纹状体、边缘区和苍白球的计算机三维结构重建   总被引:2,自引:0,他引:2  
应用计算机图形技术在大鼠脑的连续冠状切片Nissl染色的基础上通过Onyx2超级图形工作站对大鼠脑的纹状体进行了三维重建。结果提示:大鼠纹状体由尾壳核、苍白球和边缘区三部分组成,其中边缘区位于尾壳核和苍白球之间,被二完全包绕;尾壳核呈近似的内凹半球形,嘴尾径最大的为6.2mm;背腹径最大为4.9mm;宽度(冠状平面上的内外径)为3.5mm。从嘴侧到尾侧随着脑平面的增宽,尾壳核逐渐向外侧(即靠近外轮廓的方向)移位。苍白球呈块形,嘴尾径最大为4.4mm,背腹径最大为2.6mm,宽度(冠状平面上的内外径)最大为1.5mm。位于尾壳核的内侧,除内侧外基它三个方向均被尾壳核包绕。边缘区呈现一个片状扇形结构,嘴侧背腹径大,最大为2.2mm,宽约0.17mm;尾侧背腹径小,为0.8mm,宽约0.13mm。同属壳核和苍白球一样,从嘴侧到尾侧随着脑平面的增宽边缘区亦逐渐向外侧(即靠近外轮廓的方向)移位,其移位的幅度亦明显大于脑平面增宽的幅度;整个边缘区从嘴侧到尾侧呈均匀变化,其片状逐渐变宽,长度(背腹径)逐渐变小,从而形成一个盘状结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号