首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the glomerular capillaries in the first phase of rat Masugi nephritis were studied by scanning electron microscopy. The changes developed immediately after the injection of nephrotoxic rabbit IgG and early endothelial lesions (2 to 6 h) were characterized by an increase in microvilli and a decrease in endothelial pores. The microvilli were fused and produced abundant pored projections (cytofolds). The peripheral endothelium was then lifted off from the glomerular basement membrane (GBM), leaving scattered endothelial fragments on the GBM. The denuded GBM exhibited a rather uniform, thick carpet-like appearance with occasional crater formation. Depositon of fibrin strands was seen associated with endothelial exfoliation. These later dissolved and were converted to a fibrinoid material, consisting of a complex of fragmented, thin fibrils. A parallel study using the electron microscope revealed that the fibrinoid material was removed by emigrating monocytic macrophages. At the stage of resolution (24 to 72 h), the denuded GBM was covered mostly with a regenerating endothelial layer. A possible process of reorganization of the endothelial pores is discussed.  相似文献   

2.
Hydrostatic pressure, when applied to segments of the small intestine of the salamander, causes a tremendous reduction in number of microvilli and a loss of the terminal web. The intestinal epithelium strips off from its deeper layers at the level of the basement membrane. When the pressure is released and this epithelial sheet is allowed to recover, the microvilli and its terminal web reappear. Stages in the reformation of microvilli are described. In the earliest stages, foci of dense material seem to associate with the cytoplasmic surface of the apical plasma membrane. From this material, filaments appear and their regrowth is correlated with the extension of the microvilli. We suggest that the dense material nucleates the assembly of the filaments which, in turn, appear instrumental in the redevelopment of microvilli. This concept is supported by the existing literature. Further, since neither the microvilli nor the terminal web reappear on any surface but the apical surface, even though the apical and basal surfaces are bathed with the same medium, we suggest that information in the membrane itself or directly associated with the membrane dictates the distribution of the dense material which leads to the formation of the microvilli and ultimately to the polarity of the cell.  相似文献   

3.
The few and small renal corpuscles of the lizard Podarcis (= Lacerta) taurica are composed of a tuft of three to four capillaries (glomerulus), Bowman's capsule and mesangium. The thin interdigitated capillary endothelial cells are, in most regions, in contact with the mesangium. In some regions, however, they rest on a bilaminate basement membrane with an electron-dense lamina densa and a less dense lamina rara. Bowman's capsule is composed of visceral and parietal layers. The epithelial cells (podocytes) of the visceral layer bear trabeculae connected to pedicels with microvilli. The pedicels rest on a bilaminate basement membrane which in some regions has a double-layered densa with connecting bands. Generally, this basement membrane is thicker than that of the capillary endothelial cells. The mesangium is composed mostly of irregular satellite cells with large nuclei and cytoplasmic processes, but also has smaller cells with kidney-shaped nuclei and cytoplasmic processes containing microfilaments. The mesangium cells are embedded in a collagenous matrix which extends to invade the area between the epithelial basement membrane and the capillary endothelium. These observations are discussed in relation to the structure and function of vertebrate renal corpuscles with special reference to the mesangium.  相似文献   

4.
This paper describes the preparation of lung acellular alveolar matrix fragments and culture of rat type II pneumocytes directly on the alveolar epithelial basement membrane, thereby permitting study of the effect of lung basement membrane on the morphology and function of type II cells. Collagen types I, III, IV and V, laminin and fibronectin were located by immunofluorescence in the lung matrix with the same patterns as those described for the normal human lung. Transmission electron microscopy (TEM) of the fragments revealed intact epithelial and endothelial basement membranes. The matrix maintained the normal three-dimensional alveolar architecture. Glycosaminoglycans were still present by Alcian Blue staining. Isolated adult rat type II pneumocytes cultured on 150 micron thick fragments of acellular human alveolar extracellular matrix undergo gradual cytoplasmic flattening, with loss of lamellar bodies, mitochondria, and surface microvilli. These changes are similar to the in vivo differentiation of type II pneumocytes into type I pneumocytes. The type II pneumocyte behaviour on the lung epithelial basement membrane contrasted sharply with that of the same cell type cultured on a human amnionic basement membrane. On the latter surface the cells retained their cuboidal shape, lamellar bodies and surface microvilli for up to 8 days. These observations suggest that the basement membranes from different organ systems exert differing influences on the morphology and function of type II pneumocytes and that the alveolar and amnionic basement membranes may have differing three-dimensional organizations. The technique of direct culture of type II cells on the lung basement membrane provides a useful tool for studying the modulating effect of the basement membrane on alveolar epithelial cells.  相似文献   

5.
Summary Electron microscopic studies have been made of the epithelial reticular cells of the thymus in mice of both sexes ranging in age from 5 to 8 weeks. The epithelial cells generally have long cytoplasmic processes by which they are interconnected and form a network throughout the organ. The processes adhere tightly to one another by desmosomes. At the surface of the organ the processes constitute a thin sheet, and a basement membrane is discernible close and parallel to the free surface of the epithelial sheet. In the cortex the meshes of the epithelial reticulum are filled with numerous lymphoid cells and relatively few mesenchymal reticular cells. The epithelial cells in the cortex are characterized by their slender cytoplasmic processes and by the presence of large round vesicles which contain coarsely granulated, dense material. By the presence of the vesicles as well as desmosomes at junctions of the cytoplasmic processes the epithelial cells can be distinguished from other cells. For comparison the cytological characteristics of the mesenchymal reticular cells are also described. In the medulla two types — reticular and hypertrophic — of epithelial cells are recognized. The cells of reticular type are irregularly stellated in shape with extended cytoplasmic processes. Their cytoplasm often contains considerable amounts of fine filaments in bundles. Due to the relative abundance of free ribonucleoprotein particles and other cytoplasmic components, the cytoplasm appears relatively electronopaque as compared with that of the cells of the other type. The plasma membrane of the cells of reticular type sometimes invaginates into the cytoplasm to enclose a lumen which contains substance of low density and sometimes fine filaments. A basement membrane-like layer is discernible close to the infolded plasma membrane in the lumen. The cells of hypertrophic type are relatively large and round with a few shorter cytoplasmic processes. They are characterized by the abundance of the smooth endoplasmic reticulum which appears as vesicle or sac of small size. These cells often possess peculiar vesicles the wall of which is provided with microvilli projecting into the lumen. Some of these vesicles carry cilia on their wall in addition to the microvilli. The cells of hypertrophic type often undergo degeneration. The degenerating cells are concentrically surrounded by a few neighboring cells of both hypertrophic and reticular types, and Hassall's corpuscles are formed.  相似文献   

6.
The structure of the intestinal villus of the rat was studied in thin sections of tissue fixed in buffered osmium tetroxide and embedded in methacrylate. The simple columnar epithelium investing the villus is surmounted by a striated border consisting of slender projections of the cell surface. These microvilli are arranged in almost crystalline, hexagonal array, and increase the apical surface area of the cell by a factor of 24. The core of each microvillus is filled with fine fibrils which arise from the filamentous substance of the terminal web underlying the striated border. Each microvillus is covered by a tubular extension of the plasma membrane of the epithelial cell. Pinocytotic vesicles originating from the plasma membrane occur at the bases of the intermicrovillous spaces. The nucleus, mitochondria, and the endoplasmic reticulum of the epithelial cell display no unusual features. Small bits of ergastoplasm occur in the apical cytoplasm. A thin basement membrane separates the epithelium from the lamina propria which consists of vessels, nerves, and numerous lymphocytes, eosinophiles, mast cells, plasma cells, smooth muscle fibers, and macrophages suspended in a delicate stroma of fibroblasts and collagen fibers. Intercellular fat droplets often occur in this stroma, even in animals fasted for 40 hours. The blood capillaries are distinguished by their extremely attenuated, fenestrated endothelial cells. The lacteal has a thicker endothelium which, although not fenestrated, appears to have significant interruptions, especially at the margins between neighboring lining cells. Strands of smooth muscle always accompany the lacteal but do not form an integral part of its wall. Unmyelinated nerves, many of which are too small to be distinguished with the light microscope, course through the lamina propria in association with the vessels. The nerve fibers evidently do not cross the basement membrane into the epithelium. Neuromuscular junctions or other terminal apparatus were not found.  相似文献   

7.
The sensory epithelium of the abdominal sense organ (ASO) of the scallop Mizuchopecten yessoensis is composed of three cell types, sensory cells, mucous cells, and multiciliated cells. Sensory cells bear a single long (up to 250 microm) cilium surrounded by an inner ring of nine modified microvilli and an outer ring of ordinary microvilli paired with modified microvilli. Sensory cells make up about 90% of the total number of cells in the sensory epithelium. Mucous cells, which are much wider than sensory cells, bear only ordinary microvilli on their apical surface. Rare multiciliated cells with short (4-6 microm) cilia are scattered in the periphery of the sensory epithelium sheet. All hairs, cilium, and microvilli of each sensory cell are interconnected by a fibrous network. Nine modified microvilli of a single cell are interconnected by prominent laterally running fibrous links. Membrane-associated electron-dense material of modified microvilli is connected to the ciliary membrane-associated electron-dense material by fine string-like links. These links mechanically bridge the space between the cilium and modified microvilli, as do mechanical links, described for the stereocilia and kinocilium of vertebrate vestibular and cochlear hair cells. The proximal portion of a sensory cilium is about 100 microm long and has a typical 9 x 2+2 axoneme arrangement. The distal portion of a cilium is approximately 2 times thinner than the proximal one and is filled with homogeneous electron-dense material. Along the distal portion, diffuse material associated with the external surface of the membrane is found. The rigidity of distal portion of a cilium is much less than that of the proximal one.  相似文献   

8.
Distinct types of oogonia are found in the germinal epithelium that borders the ovarian lamellae of Pimelodus maculatus: A‐undifferentiated, A‐differentiated and B‐oogonia. This is similar to the situation observed for spermatogonia in the vertebrate testis. The single A‐undifferentiated oogonia divide by mitosis giving rise to A‐groups of single differentiated oogonia, each enclosed by epithelial cells that are prefollicle cells. Subsequently, the single A‐differentiated oogonia proliferate to generate B‐oogonia that are interconnected by cytoplasmic bridges, hence, forming germline cysts. The prefollicle cells associated with them also divide. Within the germline cysts, B‐oogonia enter meiosis becoming oocytes. Meiotic prophase and early folliculogenesis occur within the germline cysts. During folliculogenesis, prefollicle cells grow between the oocytes, encompassing and individualizing each of them. The intercellular bridges disappear, and the germline cysts are broken down. Next, a basement membrane begins to form around the nascent follicle, separating an oocyte and its associated prefollicle cells from the cell nest. Folliculogenesis is completed when the oocyte and the now follicle cells are totally encompassed by a basement membrane. Cells derived from the ovarian stroma encompass the newly‐formed ovarian follicle, and become the theca, thereby completing the formation of the follicle complex. Follicle complexes remain attached to the germinal epithelium as they share a portion of basement membrane. This attachment site is where the oocyte is released during ovulation. The postovulatory follicle complex is continuous with the germinal epithelium as both are supported by a continuous basement membrane. The findings in P. maculatus reinforce the hypothesis that ovarian follicle formation represents a conserved process throughout vertebrate evolution. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
Summary The endothelium in the carotid arteries of the giraffe lies on an extensive basement membrane complex that has a distinctly fibrillar component. Small electron-dense areas occur in the basal portion of the endothelium and normally in apposition to the fibrillar laminae of the basement membrane. These zones are believed here to constitute hemi-desmosomes where endothelial attachment may be most tenacious.  相似文献   

10.
An electron microscopic study of the intestinal villus. I. The fasting animal   总被引:22,自引:0,他引:22  
The structure of the intestinal villus of the rat was studied in thin sections of tissue fixed in buffered osmium tetroxide and embedded in methacrylate. The simple columnar epithelium investing the villus is surmounted by a striated border consisting of slender projections of the cell surface. These microvilli are arranged in almost crystalline, hexagonal array, and increase the apical surface area of the cell by a factor of 24. The core of each microvillus is filled with fine fibrils which arise from the filamentous substance of the terminal web underlying the striated border. Each microvillus is covered by a tubular extension of the plasma membrane of the epithelial cell. Pinocytotic vesicles originating from the plasma membrane occur at the bases of the intermicrovillous spaces. The nucleus, mitochondria, and the endoplasmic reticulum of the epithelial cell display no unusual features. Small bits of ergastoplasm occur in the apical cytoplasm. A thin basement membrane separates the epithelium from the lamina propria which consists of vessels, nerves, and numerous lymphocytes, eosinophiles, mast cells, plasma cells, smooth muscle fibers, and macrophages suspended in a delicate stroma of fibroblasts and collagen fibers. Intercellular fat droplets often occur in this stroma, even in animals fasted for 40 hours. The blood capillaries are distinguished by their extremely attenuated, fenestrated endothelial cells. The lacteal has a thicker endothelium which, although not fenestrated, appears to have significant interruptions, especially at the margins between neighboring lining cells. Strands of smooth muscle always accompany the lacteal but do not form an integral part of its wall. Unmyelinated nerves, many of which are too small to be distinguished with the light microscope, course through the lamina propria in association with the vessels. The nerve fibers evidently do not cross the basement membrane into the epithelium. Neuromuscular junctions or other terminal apparatus were not found.  相似文献   

11.
ELECTRON MICROSCOPY OF THE AVIAN RENAL GLOMERULUS   总被引:1,自引:0,他引:1       下载免费PDF全文
Electron microscopy of sections of chicken glomeruli shows them to possess a large central cell mass, occupying the hilum and the centre of the glomerulus, and continuous with the adventitia of the afferent and efferent arterioles. The glomerular capillaries form a much simpler system than in mammals and are spread over the surface of the central cell mass. Between the capillaries the mass is limited externally by the major component of the glomerular capillary basement membrane, which continues over the surface of the mass from one capillary to the next. Projections of the central cell mass characteristically form the support for glomerular capillaries, and smaller knobs of the central mass may project actually into the lumen of the capillaries, but always carry a layer of endothelial cytoplasm before them. They are never in direct contact with blood. The basement membrane of the glomerular capillary loop has a central dense layer and two lateral less dense layers as in mammals. The central dense layer is continuous with similar appearing dense material in the intercellular spaces of the adventitiae of the arterioles, and also with that of the central cell mass. The two less dense layers can also be traced into direct continuity with the less dense regions of this intercellular substance. The endothelial cytoplasm is spread as a thin sheet over the inner surface of the capillary basement membrane, and shows scattered "pores" resembling those described in mammals. Epithelial cells with interlacing pedicels are at least as prominent as those in mammals. Bowman's capsular membrane also possesses three layers similar to but less wide than those of the capillary basement membrane, and all three layers can be traced into continuity with the dark and light regions of the intercellular material of the adventitial cells of the arterioles, and beyond them with that of the central cell mass. At the hilum Bowman's capsular membrane also fuses with the capillary basement membrane.  相似文献   

12.
This paper quantitatively defines the nanoscale topography of the basement membrane underlying the anterior corneal epithelium of the macaque. Excised corneal buttons from macaques were placed in 2.5 mM ethylenediaminetetraacetate (EDTA) for 2.5 h, after which the epithelium was carefully removed to expose the underlying basement membrane. The integrity of the remaining basement membrane was verified using fluorescent microscopy in conjunction with antibody staining directed against laminin and collagen type IV as well as transmission electron microscopy. Characterization of the surface of the basement membrane was performed using transmission electron microscopy, high-resolution, low-voltage scanning electron microscopy, and atomic force microscopy. Quantitative data were obtained with all three imaging techniques and compared. The basement membrane has a complex topography consisting of tightly cross-linked fibers intermingled with pores. The mean elevation of features measured by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy was 149 +/- 60 nm, 191 +/- 72 nm, and 147 +/- 73 nm, respectively. Mean fiber diameter as measured by SEM was 77 +/- 44 nm and pore diameter was 72 +/- 40 nm, with pores occupying approximately 15% of the total surface area. Similar feature types and dimensions were also found for Matrigel, a commercially available basement membrane-like complex, supporting that a minimum of artifact was introduced by corneal preparative procedures to remove the overlying epithelium. Topographic features amplified the surface area over which cell-substratum interactions occur by an estimated 400%. The three-dimensional structure of the basement membrane exhibits a rich complex topography of individual features, consisting of pores and fibers with dimensions ranging from 30 to 400 nm. These nanoscale substratum features may modulate fundamental cell behaviors such as adhesion, migration, proliferation, and differentiation.  相似文献   

13.
The ultrastructure of the cuticle of some British lumbricids (Annelida)   总被引:1,自引:0,他引:1  
The ultrastructure of the cuticle of 11 species of British lumbricids is described. The number of unbanded collagenous fibre layers varies with the species and is roughly proportional to the size of the adult worm. Four zones are discernible in the cuticle matrix in all species except E. foetida where the outermost zone shows subdivision.
Microvilli, cytoplasmic extensions from the epithelial surface, occur. The "long" and "short" microvilli of other workers are shown to be different views of the same structure. The microvilli have an ovoid base with the two poles forming low shoulders on either side of the ascending microvillus. The bases are oriented at right-angles to the longitudinal axis of the worm and the microvilli are arranged in regular staggered rows along the same axis. Details of the spatial alignment of the microvilli are given and the possible role of these regularly arranged structures as factors in the orientation of the collagen fibre unit filaments is discussed, and it is speculated that they might also have some proprioceptive function.
Distally the microvilli terminate among the surface epicuticular projections and are shown to give rise to them. The epicuticular projections are peanut-shell shaped with a distinct substructure consisting of a 8 nm electron dense lining and two parallel dense discs, each 8 nm deep, above the "waist".
The mucous cell pores are lined with electron pale microfibrillar material and at the base of the pore a circlet of 13–15 short microvilli, with prominent tonofilaments, arises from the cytoplasm of the mucous cell. Surrounding the pore microvilli are numerous, small, membrane bound mucous pore particles.  相似文献   

14.
Summary The posterior rhombencephalic tela choroidea of the bullfrog was examined by electron microscopy. This membrane, the pia-ependymal roof of the caudal hindbrain, contains a large central region characterized by cuboidal ependymal cells which surround sizable microscopic apertures — the interependymal pores.Ultrastructurally ependymal cells of this area are characterized by infrequent apical microvilli and cilia. They contain irregularly shaped nuclei and few cytoplasmic organelles that are largely apical in position. The most striking feature is an abundance of cytoplasmic filaments forming an extensive cytoskeleton. Laterally these cells are joined by numerous elaborate desmosomes. The majority of the ependymal cells have a basal lamina consisting of single, double, or triple laminae lying parallel to the basal plasma membrane.Several unusual specializations are seen at the margins of the interependymal pores. The ependymal cells have lateral cytoplasmic processes that form the actual border of each pore. These processes originate from the apical surface of the cell and partially enclose an elaborate network of basal lamina associated with the interependymal pores.These findings demonstrate microscopic apertures in the roof of the fourth ventricle in the bullfrog that are associated with an unusual form of supportive ependyma.  相似文献   

15.
The mesenchymal cells of the developing tooth differentiate into odontoblasts as a result of an epithelio-mesenchymal interaction. Odontoblast differentiation was studied in vitro by cultivating dental mesenchyme and epithelium with interposed filters. Separation of the two components by enzyme treatment resulted in removal of the basement membrane. When the epithelium was grown alone, or transfilter from killed lens capsule, the basement membrane was not restored. Transfilter cultivation with dental mesenchyme resulted in basement membrane formation, but only if the filter pores allowed penetration of cytoplasmic processes. Hence, a close association between the epithelial and the mesenchymal cells seems to be a prerequisite for the restoration of the basement membrane. Differentiation of odontoblasts took place only in explants in which a basement membrane was formed. Differentiation did not occur when contact of the mesenchymal cells with the basement membrane was prevented by small pore size filters. Further experiments demonstrating an intact basement membrane suggested that membrane contacts between the epithelial and the mesenchymal cells are not needed for odontoblast differentiation. Hence, we suggest that differentiation of odontoblasts is triggered via contact of the mesenchymal cells with the basement membrane.  相似文献   

16.
The wall of the blood capillaries of skeletal muscles (diaphragm, tongue, hind legs) and myocardium of the rat, guinea pig, and hamster consists of three consecutive layers or tunics: the endothelium (inner layer), the basement membrane with its associated pericytes (middle layer), and the adventitia (outer layer). The flattened cells of the endothelium have a characteristic, large population of cytoplasmic vesicles which, within the attenuated periphery of the cells, may attain a maximum frequency of 120/µ2 of cell front and occupy ~18% of the cytoplasmic volume; these values decrease as the cells thicken toward the perikaryon. The vesicles are 650–750 A in over-all diameter and are bounded by typical unit membranes. They occur as single units or are fused to form short chains of two to three vesicles. Each configuration may lie entirely within the cytoplasm or open onto the cell surface. In the latter case, the unit membrane of the vesicle is continuous, layer by layer, with the plasmalemma. Chains of vesicles opening simultaneously on both the blood and tissue fronts of the endothelial tunic have not been observed either in sections or in a tridimensional reconstruction of a sector of endothelial cell cytoplasm. Adjacent endothelial cells are closely apposed to one another and appear to be joined over a large part of their margins, possibly over their entire perimeter, by narrow belts of membrane fusion (zonulae occludentes). Except for tongue capillaries, patent intercellular gaps are rare or absent. The middle layer is formed by a continuous basement membrane (~500 A thick) and by pericytes which lie in between leaflets of this membrane. The tips of the pericyte pseudopodia penetrate through the inner leaflet of the basement membrane and join the endothelium in maculae occludentes. The adventitia is a discontinuous layer comprising cellular (macrophages, fibroblasts, mast cells) and extracellular (fibrils, amorphous matrix) elements. The same general type of construction appears to be used along the entire length of the capillary.  相似文献   

17.
本文报告了树肺脏的一般结构和超微结构。与人和灵长目相似,其肺实质也是由导气部和呼吸部构成。但不同的是其细支气管粘膜形成很高的皱襞。在电镜下Clara细胞电子密度高,顶部胞质中含有大量膜包颗粒,这些结构与大白鼠和家兔的结构相似。许多毛细血管外方都包绕着基膜和肺泡Ⅰ型上皮细胞的胞质。气血屏障由肺泡上皮细胞、融合的基膜和内皮细胞胞质构成。说明树肺脏不但是呼吸器官,也是一些激素和介质产生及代谢的重要器官。本文为研究树的正常生理功能及分类提供形态学资料。  相似文献   

18.
THE FINE STRUCTURE OF THE RENAL GLOMERULUS OF THE MOUSE   总被引:43,自引:14,他引:29       下载免费PDF全文
  相似文献   

19.
A morphological basis for transcellular potassium transport in the midgut of the mature fifth instar larvae of Hyalophora cecropia has been established through studies with the light and electron microscopes. The single-layered epithelium consists of two distinct cell types, the columnar cell and the goblet cell. No regenerative cells are present. Both columnar and goblet cells rest on a well developed basement lamina. The basal portion of the columnar cell is incompletely divided into compartments by deep infoldings of the plasma membrane, whereas the apical end consists of numerous cytoplasmic projections, each of which is covered with a fine fuzzy or filamentous material. The cytoplasm of this cell contains large amounts of rough endoplasmic reticulum, microtubules, and mitochondria. In the basal region of the cell the mitochondria are oriented parallel to the long axes of the folded plasma-lemma, but in the intermediate and apical portions they are randomly scattered within the cytoplasmic matrix. Compared to the columnar cell, the goblet cell has relatively little endoplasmic reticulum. On the other hand, the plications of the plasma membrane of the goblet cell greatly exceed those of the columnar cell. One can distinguish at least four characteristic types of folding: (a) basal podocytelike extensions, (b) lateral evaginations, (c) apical microvilli, and (d) specialized cytoplasmic projections which line the goblet chamber. Apically, the projections are large and branch to form villus-like units, whereas in the major portion of the cavity each projection appears to contain an elongate mitochondrion. Junctional complexes of similar kind and position appear between neighboring columnar cells and between adjacent columnar and goblet cells as follows: a zonula adherens is found near the luminal surface and is followed by one or more zonulae occludentes. The morphological data obtained in this study and the physiological information on ion transport through the midgut epithelium have encouraged us to suggest that the goblet cell may be the principal unit of active potassium transport from the hemolymph to the lumen of the midgut. We have postulated that ion accumulation by mitochondria in close association with plicated plasma membranes may play a role in the active movement of potassium across the midgut.  相似文献   

20.
Summary A combined light- and electron microscopic study of the normal thymus of young-adult, male Osborne-Mendel rats and, to a lesser extent, of young (8 days) and older (7–8 months) animals has been made. The data obtained provide a base line for submicroscopic investigations being in progress of the thymus in pathological conditions (acute involution followed by regeneration and virus-induced tumours). In addition, attention is given to the question whether the various thymic components show morphological signs which could represent secretory activity.Two main types of cells with epithelial characteristics (desmosomes, tonofilaments, basal membrane) are distinguished on the basis of their form, location and cytological features. The reticular type is most frequent in the cortex and contains round, clear structures partly filled with dense and/or membranous material. The cisternae of the endoplasmic reticulum frequently are dilated. The other cell type which only is present in the medulla, shows a more polygonal form. The clear cytoplasm is marked by an abundance of vesicles, golgi complexes and clusters of vacuoles provided with microvilli.The submicroscopic findings in the lymphocytes confirm in general previous reports. The nucleus of the large lymphocytes contains one or two faintly defined nucleoli. The nuclear pores show an inner clear zone with a central knob. The relatively large cytoplasm is studded with polyribosomes; a small band beneath the plasma membrane is devoid of organelles. The chromatin material in the nucleus of the small lymphocytes is condensed at the periphery and in the center; nucleoli are rare. Well developed golgi apparatuses with centrioles are present; multivesicular bodies and lysosomes are not invariably found. The intranuclear formation of mitochondria was never encountered. Interruptions of the cell membrane and cytoplasmic fragmentation are observed. Different phases of the mitotic cycle of the thymocytes are illustrated. Evidence of epithelial cell lymphocyte transformation cannot be given by the study of normal tissue.Mesenchymal reticular cells with or without evident phagocytic activity are described and can be regarded as representing different types.The number of plasma cells increases with age. The endoplasmic cisternae of some of them contain a material which is condensed in a crystalline form and probably represents proteins.The tubular structures which usually are located at the periphery of the thymic lobuli also have been examined. The epithelial cells lining these structures show irregular microvilli and the intracytoplasmic granules as well as the vacuoles and the well developed endoplasmic reticulum are supposed to be signs of a secretory activity. Moderately dense material condensed in a crystalline form is present in the tubular lumina; the significance is not clear, however.Many small cortical bloodvessels are only partly enclosed by epithelial cells and the lymphocytes lie nearly in direct contact with the endothelial basement membrane. These findings are discussed in relation to the existence of a thymus-blood barrier as proposed in other reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号