首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sepsis is a generalized infection that involves alterations in inflammatory parameters, oxidant status, and purinergic signaling in many tissues. Physical exercise has emerged as a tool to prevent this disease because of its anti-inflammatory and antioxidant properties. Thus, in this study, we investigated the effects of physical exercise on preventing alterations in purinergic system components, oxidative stress, and inflammatory parameters in lipopolysaccharide (LPS)-induced sepsis in rats. Male Wistar rats were divided into four groups: control, exercise (EX), LPS, and EX+LPS. The resisted physical exercise was performed for 12 weeks on a ladder with 1 m height. After 72 hours of the last exercise session, the animals received 2.5 mg/kg of LPS for induction of sepsis, and after 24 hours, lungs and blood samples were collected for analysis. The results showed that the exercise protocol used was able to prevent, in septic animals: (1) the increase in body temperature; (2) the increase of lipid peroxidation and reactive species levels in the lung, (3) the increase in adenosine triphosphate levels in serum; (4) the change in the activity of the enzymes ectonucleotidases in lymphocytes, partially; (5) the change in the density of purinergic enzymes and receptors in the lung, and (6) the increase of IL-6 and IL-1β gene expression. Our results revealed the involvement of purinergic signaling and oxidative damage in the mechanisms by which exercise prevents sepsis aggravations. Therefore, the regular practice of physical exercise is encouraged as a better way to prepare the body against sepsis complications.  相似文献   

2.
3.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   

4.
Distribution of ectonucleotidases in the rodent brain revisited   总被引:2,自引:0,他引:2  
Nucleotides comprise a major class of signaling molecules in the nervous system. They can be released from nerve cells, glial cells, and vascular cells where they exert their function via ionotropic (P2X) or metabotropic (P2Y) receptors. Signaling via extracellular nucleotides and also adenosine is controlled and modulated by cell-surface-located enzymes (ectonucleotidases) that hydrolyze the nucleotide to the respective nucleoside. Extracellular hydrolysis of nucleotide ligands involves a considerable number of enzymes with differing catalytic properties differentially affecting the nucleotide signaling pathway. It is therefore important to investigate which type of ectonucleotidase(s) contributes to the control of nucleotide signaling in distinct cellular and physiological settings. By using a classical enzyme histochemical approach and employing various substrates, inhibitors, and knockout animals, we provide, for the first time, a comparative analysis of the overall distribution of catalytic activities reflecting four ectonucleotidase families: ecto-5′-nucleotidase, alkaline phosphatases, ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), and ectonucleotide pyrophyphatases/phosphodiesterases (E-NPPs). We place into perspective the earlier literature and provide novel evidence for a parenchymal localization of tissue non-specific alkaline phosphatase, E-NPPs, and E-NTPDases in the mouse brain. In addition, we specify the location of ectonucleotidases within the brain vasculature. Most notably, brain vessels do not express ecto-5′-nucleotidase. The preponderance of individual enzymes differs considerably between brain locations. The contribution of all types of ectonucleotidases thus needs to be considered in physiological and pharmacological studies of purinergic signaling in the brain. This work was supported by the Deutsche Forschungsgemeinschaft (140/17-3).  相似文献   

5.
There is considerable evidence that purines are vasoactive molecules involved in the regulation of blood flow. Adenosine is a well known vasodilator that also acts as a modulator of the response to other vasoactive substances. Adenosine exerts its effects by interacting with adenosine receptors. These are metabotropic G-protein coupled receptors and include four subtypes, A(1), A(2A), A(2B) and A(3). Adenosine triphosphate (ATP) is a co-transmitter in vascular neuroeffector junctions and is known to activate two distinct types of P2 receptors, P2X (ionotropic) and P2Y (metabotropic). ATP can exert either vasoconstrictive or vasorelaxant effects, depending on the P2 receptor subtype involved. Splanchnic vascular beds are of particular interest, as they receive a large fraction of the cardiac output. This review focus on purinergic receptors role in the splanchnic vasomotor control. Here, we give an overview on the distribution and diversity of effects of purinergic receptors in splanchnic vessels. Pre- and post-junctional receptormediated responses are summarized. Attention is also given to the interactions between purinergic receptors and other receptors in the splanchnic circulation.  相似文献   

6.
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.  相似文献   

7.
8.
Adenosine 5'-triphosphate (ATP) was identified in 1970 as the transmitter responsible for non-adrenergic, non-cholinergic neurotransmission in the gut and bladder and the term 'purinergic' was coined. Purinergic cotransmission was proposed in 1976 and ATP is now recognized as a cotransmitter in all nerves in the peripheral and central nervous systems. P1 (adenosine) and P2 (ATP) receptors were distinguished in 1978. Cloning of these receptors in the early 1990s was a turning point in the acceptance of the purinergic signalling hypothesis. There are both short-term purinergic signalling in neurotransmission, neuromodulation and secretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation and death in development and regeneration. Much is known about the mechanisms of ATP release and its breakdown by ectonucleotidases. Recently, there has been emphasis on purinergic pathophysiology, including neurodegenerative and neuropsychiatric disorders. Purinergic therapeutic strategies are being developed for treatment of gut, kidney, bladder, lung, skeletal and reproductive system disorders, pain and cancer.  相似文献   

9.
Skeletal muscle displays remarkable plasticity, enabling substantial adaptive modifications in its metabolic potential and functional characteristics in response to external stimuli such as mechanical loading and nutrient availability. Contraction-induced adaptations are determined largely by the mode of exercise and the volume, intensity, and frequency of the training stimulus. However, evidence is accumulating that nutrient availability serves as a potent modulator of many acute responses and chronic adaptations to both endurance and resistance exercise. Changes in macronutrient intake rapidly alter the concentration of blood-borne substrates and hormones, causing marked perturbations in the storage profile of skeletal muscle and other insulin-sensitive tissues. In turn, muscle energy status exerts profound effects on resting fuel metabolism and patterns of fuel utilization during exercise as well as acute regulatory processes underlying gene expression and cell signaling. As such, these nutrient-exercise interactions have the potential to activate or inhibit many biochemical pathways with putative roles in training adaptation. This review provides a contemporary perspective of our understanding of the molecular and cellular events that take place in skeletal muscle in response to both endurance and resistance exercise commenced after acute and/or chronic alterations in nutrient availability (carbohydrate, fat, protein, and several antioxidants). Emphasis is on the results of human studies and how nutrient provision (or lack thereof) interacts with specific contractile stimulus to modulate many of the acute responses to exercise, thereby potentially promoting or inhibiting subsequent training adaptation.  相似文献   

10.
Neto JC  Lira FS  de Mello MT  Santos RV 《Amino acids》2011,41(5):1165-1172
Chronic physical exercise with adequate intensity and volume associated with sufficient recovery promotes adaptations in several physiological systems. While intense and exhaustive exercise is considered an important immunosuppressor agent and increases the incidence of upper respiratory tract infections (URTI), moderate regular exercise has been associated with significant disease protection and is a complementary treatment of many chronic diseases. The effects of chronic exercise occur because physical training can induce several physiological, biochemical and psychological adaptations. More recently, the effect of acute exercise and training on the immunological system has been discussed, and many studies suggest the importance of the immune system in prevention and partial recovery in pathophysiological situations. Currently, there are two important hypotheses that may explain the effects of exercise and training on the immune system. These hypotheses including (1) the effect of exercise upon hormones and cytokines (2) because exercise can modulate glutamine concentration. In this review, we discuss the hypothesis that exercise may modulate immune functions and the importance of exercise immunology in respect to chronic illnesses, chronic heart failure, malnutrition and inflammation.  相似文献   

11.
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.  相似文献   

12.
Maintenance of mitochondrial quality is essential for skeletal muscle function and overall health. Exercise training elicits profound adaptations to mitochondria to improve mitochondrial quality in skeletal muscle. We have recently demonstrated that acute exercise promotes removal of damaged/dysfunctional mitochondria via mitophagy in skeletal muscle during recovery through the Ampk-Ulk1 signaling cascade. In this Extra View, we explore whether Pink1 is stabilized on mitochondria following exercise as the signal for mitophagy. We observed no discernable presence of Pink1 in isolated mitochondria from skeletal muscle at any time point following acute exercise, in contrast to clear evidence of stabilization of Pink1 on mitochondria in HeLa cells following treatment with the uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Taken together, we conclude that Pink1 is not involved in exercise-induced mitophagy in skeletal muscle.  相似文献   

13.
Deposition of uric acid crystals in joints causes the acute and chronic inflammatory disease known as gout and prolonged airway exposure to silica crystals leads to the development of silicosis, an irreversible fibrotic pulmonary disease. Aluminum salt (Alum) crystals are frequently used as vaccine adjuvant. The mechanisms by which crystals activate innate immunity through the Nlrp3 inflammasome are not well understood. Here, we show that uric acid, silica and Alum crystals trigger the extracellular delivery of endogenous ATP, which just precedes the secretion of mature interleukin-1β (IL-1β) by macrophages, both events depending on purinergic receptors and connexin/pannexin channels. Interestingly, not only ATP but also ADP and UTP are involved in IL-1β production upon these Nlrp3 inflammasome activators through multiple purinergic receptor signaling. These findings support a pivotal role for nucleotides as danger signals and provide a new molecular mechanism to explain how chemically and structurally diverse stimuli can activate the Nlrp3 inflammasome.  相似文献   

14.
Extracellular nucleotides and nucleosides act as signaling molecules involved in a wide spectrum of biological effects. Their levels are controlled by a complex cell surface-located group of enzymes called ectonucleotidases. There are four major families of ectonucleotidases, nucleoside triphosphate diphosphohydrolases (NTPDases/CD39), ectonucleotide pyrophosphatase/phosphodiesterases (E-NPPs), alkaline phosphatases and ecto-5'-nucleotidase. In the last few years, substantial progress has been made toward the molecular identification of members of the ectonucleotidase families and their enzyme structures and functions. In this review, there is an emphasis on the involvement of NTPDase and 5'-nucleotidase activities in disease processes in several tissues and cell types. Brief background information is given about the general characteristics of these enzymes, followed by a discussion of their roles in thromboregulatory events in diabetes, hypertension, hypercholesterolemia and cancer, as well as in pathological conditions where platelets are less responsive, such as in chronic renal failure. In addition, immunomodulation and cell-cell interactions involving these enzymes are considered, as well as ATP and ADP hydrolysis under different clinical conditions related with alterations in the immune system, such as acute lymphoblastic leukemia (ALL), B-chronic lymphocytic leukemia (B-CLL) and infections associated with human immunodeficiency virus (HIV). Finally, changes in ATP, ADP and AMP hydrolysis induced by inborn errors of metabolism, seizures and epilepsy are discussed in order to highlight the importance of these enzymes in the control of neuronal activity in pathological conditions. Despite advances made toward understanding the molecular structure of ectonucleotidases, much more investigation will be necessary to entirely grasp their role in physiological and pathological conditions.  相似文献   

15.
While intracellular adenosine triphosphate (ATP) occupies a key position in the bioenergetic metabolism of all the cellular compartments that form the tumor microenvironment (TME), extracellular ATP operates as a potent signal transducer. The net effects of purinergic signaling on the biology of the TME depend not only on the specific receptors and cell types involved, but also on the activation status of cis‐ and trans‐regulatory circuitries. As an additional layer of complexity, extracellular ATP is rapidly catabolized by ectonucleotidases, culminating in the accumulation of metabolites that mediate distinct biological effects. Here, we discuss the molecular and cellular mechanisms through which ATP and its degradation products influence cancer immunosurveillance, with a focus on therapeutically targetable circuitries.  相似文献   

16.
Purinergic receptors comprise a family of transmembrane receptors that are activated by extracellular nucleosides and nucleotides. The two major classes of purinergic receptors, P1 and P2, are expressed widely in the gastrointestinal tract as well as immune cells. The purinergic receptors serve a variety of functions from acting as neurotransmitters, to autocoid and paracrine signaling, to cell activation and immune response. Nucleosides and nucleotide agonist of purinergic receptors are released by many cell types in response to specific physiological signals, and their levels are increased during inflammation. In the past decade, the advent of genetic knockout mice and the development of highly potent and selective agonists and antagonists for the purinergic receptors have significantly advanced the understanding of purinergic receptor signaling in health and inflammation. In fact, agonist/antagonists of purinergic receptors are emerging as therapeutic modalities to treat intestinal inflammation. In this article, the distribution of the purinergic receptors in the gastrointestinal tract and their physiological and pathophysiological role in intestinal inflammation will be reviewed.  相似文献   

17.
Purinergic signaling has considerable impact on the functioning of the nervous system, including the special senses. Purinergic receptors are expressed in various cell types in the retina, cochlea, taste buds, and the olfactory epithelium. The activation of these receptors by nucleotides, particularly adenosine-5′-triphosphate (ATP) and its breakdown products, has been shown to tune sensory information coding to control the homeostasis and to regulate the cell turnover in these organs. While the purinergic system of the retina, cochlea, and taste buds has been investigated in numerous studies, the available information about purinergic signaling in the olfactory system is rather limited. Using functional calcium imaging, we identified and characterized the purinergic receptors expressed in the vomeronasal organ of larval Xenopus laevis. ATP-evoked activity in supporting and basal cells was not dependent on extracellular Ca2+. Depletion of intracellular Ca2+ stores disrupted the responses in both cell types. In addition to ATP, supporting cells responded also to uridine-5′-triphosphate (UTP) and adenosine-5′-O-(3-thiotriphosphate) (ATPγS). The response profile of basal cells was considerably broader. In addition to ATP, they were activated by ADP, 2-MeSATP, 2-MeSADP, ATPγS, UTP, and UDP. Together, our findings suggest that supporting cells express P2Y2/P2Y4-like purinergic receptors and that basal cells express multiple P2Y receptors. In contrast, vomeronasal receptor neurons were not sensitive to nucleotides, suggesting that they do not express purinergic receptors. Our data provide the basis for further investigations of the physiological role of purinergic signaling in the vomeronasal organ and the olfactory system in general.  相似文献   

18.
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.  相似文献   

19.
Nucleotides and nucleosides play an important role in neurodevelopment acting through specific receptors. Ectonucleotidases are the major enzymes involved in controlling the availability of purinergic receptors ligands. ATP is co-released with several neurotransmitters and is the most important source of extracellular adenosine by catabolism exerted by ectonucleotidases. The main ectonucleotidases are named NTPDases (1–8) and 5′-nucleotidase. Adenosine is a powerful modulator of neurotransmitter release. Caffeine blocks adenosine receptor activity as well as adenosine-mediated neuromodulation. Considering the susceptibility of the immature brain to caffeine and the need for correct purinergic signaling during fetal development, we have analyzed the effects of caffeine exposure during gestational and lactational periods on nucleotide degradation and ectonucleotidase expression from the hippocampi of 7-, 14- and 21-days-old rats. Nucleotides hydrolysis was assessed by colorimetric determination of inorganic phosphate released. Ectonucleotidases expression was performed by RT-PCR. ATP and ADP hydrolysis displayed parallel age-dependent decreases in both control and caffeine-treated groups. AMP hydrolysis increased with caffeine treatment in 7-days-old rats (75%); although there was no significant difference in AMP hydrolysis between control (non caffeine-treated) rats and 14- or 21-days caffeine-treated rats. ADP hydrolysis was not affected by caffeine treatment. Caffeine treatment in 7- and 14-days-old rats decreased ATP hydrolysis when compared to the control group (19% and 60% decrease, respectively), but 21-days-treated rats showed an increase in ATP hydrolysis (39%). Expression levels of NTPDase 1 and 5 decreased in hippocampi of caffeine-treated rats. The expression of 5′-nucleotidase was not affected after caffeine exposure. The changes observed in nucleotide hydrolysis and ectonucleotidases expression could promote subtle effects on normal neural development considering the neuromodulatory role of adenosine.  相似文献   

20.
In the central nervous system, the formation of the myelin sheath and the differentiation of the myelinating cells, namely oligodendrocytes, are regulated by complex signaling networks that involve purinergic receptors and the extracellular matrix. However, the exact nature of the molecular interactions underlying these networks still needs to be defined. In this respect, the data presented here reveal a signaling mechanism that is characterized by an interaction between the purinergic P2Y(12) receptor and the matricellular extracellular matrix protein autotaxin (ATX), also known as ENPP2, phosphodiesterase-Iα/ATX, or lysoPLD. ATX has been previously described by us to mediate intermediate states of oligodendrocyte adhesion and to enable changes in oligodendrocyte morphology that are thought to be crucial for the formation of a fully functional myelin sheath. This functional property of ATX is mediated by ATX's modulator of oligodendrocyte remodeling and focal adhesion organization (MORFO) domain. Here, we show that the expression of the P2Y(12) receptor is necessary for ATX's MORFO domain to exert its effects on differentiating oligodendrocytes. In addition, our data demonstrate that exogenous expression of the P2Y(12) receptor can render cells responsive to the known effects of ATX's MORFO domain, and they identify Rac1 as an intracellular factor mediating the effect of ATX-MORFO-P2Y(12) signaling on the assembly of focal adhesions. Our data further support the idea that a physical interaction between ATX and the P2Y(12) receptor provides the basis for an ATX-MORFO-P2Y(12) signaling axis that is crucial for mediating cellular states of intermediate adhesion and morphological/structural plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号