首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雪松松针总多酚的纯化工艺和抗氧化活性研究   总被引:1,自引:0,他引:1  
通过吸附-解吸附能力考察,从树脂NKA-9、S-8、AB-8、D101、HPD-100及HPD-600中筛选出适合纯化雪松松针总多酚的大孔树脂,并确定纯化工艺参数。结果表明,HPD-600树脂为纯化雪松松针总多酚的优良材料;最佳纯化工艺为:上样量为8 BV、浓度1.5 mg/m L、p H 4.0~5.0,以2 BV/h流速进行动态吸附;以10 BV/h流速的6 BV蒸馏水冲洗除杂后,用3 BV的70%乙醇以4 BV/h的流速进行解吸。在此条件下,多酚的纯度由9.88%提高到34.56%,约为纯化前的3.5倍。利用DPPH和ABTS自由基法对纯化前后雪松松针总多酚的抗氧化活性进行了比较,结果显示,清除DPPH和ABTS自由基能力依次为Vc纯化后的总多酚提取物BHT纯化前的总多酚提取物。通过测定纯化后雪松松针总多酚对野生型秀丽隐杆线虫体内活性氧的水平评价其体内抗氧化能力,结果显示,雪松松针总多酚降低了线虫体内的活性氧水平,10μg/m L雪松松针总多酚提取物溶液与4000μM/L的Vc对线虫的体内抗氧化能力相当,表现出良好的抗氧化活性。  相似文献   

2.
本研究以赶黄草地上部分为材料,研究大孔树脂纯化赶黄草黄酮的工艺,并评价体外抗氧化活性。根据大孔树脂对赶黄草黄酮的吸附和解吸性能,从7种不同类型的大孔树脂中筛选出适宜的树脂,进一步优化其纯化工艺,并比较纯化前后黄酮的体外抗氧化活性。试验结果表明,DM130大孔树脂对赶黄草黄酮有较好的吸附和解吸效果,其最佳纯化工艺参数:上样液黄酮浓度为1.0 mg/mL、pH为5、上样速度为1.0 mL/min、上样量为110 mL、洗脱液为70%乙醇、洗脱速度为1.0 mL/min和洗脱体积为40 mL。该工艺条件下,黄酮的纯度由20.04%提高至43.93%,提高了23.89%,表明DM130树脂对赶黄草黄酮的纯化效果较好。另外,纯化后赶黄草黄酮的DPPH自由基清除能力和还原力均显著提高。  相似文献   

3.
为探讨嘉宝果(Myrciaria cauliflora)叶片多酚的分离纯化方法,对4种树脂(NKA-2、NKA-9、HPD-826和HPD-400A)进行了筛选,并分析了其多酚的抗氧化、体外降糖活性和组成成分。结果表明,NKA-9树脂适于嘉宝果叶片多酚纯化,最佳工艺条件为:上样液质量浓度2.00 mg/mL、洗脱液乙醇体积分数70%、上样流速1.0 mL/min、上样量204 mL、洗脱流速0.9 mL/min、洗脱量70 mL。嘉宝果叶多酚纯度可达69.86%。嘉宝果叶片纯化后的多酚抗氧化及α-葡萄糖苷酶抑制活性高于纯化前,但α-淀粉酶抑制活性低于纯化前。HPLC结果表明,嘉宝果叶片中含有杨梅苷、芦丁、金丝桃苷和鞣花酸,其中鞣花酸含量最高[(16.15±0.49) mg/g]。因此,NKA-9树脂适合分离纯化嘉宝果叶片多酚,纯化后的多酚抗氧化及α-葡萄糖苷酶抑制活性增强。  相似文献   

4.
目的:筛选适合分离纯化辣椒叶总黄酮的一种大孔树脂,同时用响应面法进行优化得到最佳纯化工艺。方法:采用热回流法提取辣椒叶总黄酮,以吸附率和解吸率为考察指标,考察6种不同型号的大孔树脂(HPD100、HPD450、HPD600、HPD826、D101、AB-8)对辣椒叶总黄酮的吸附能力与解吸能力,确定最佳树脂。通过动态吸附解吸实验考察此树脂对辣椒叶总黄酮的最佳分离纯化工艺。结果:通过对辣椒叶总黄酮吸附分离性能的分析显示HPD600为最佳树脂,最优工艺为:上样浓度为10 mg/mL,上样量为10 mL,洗脱体积为4 BV,洗脱液流速为4 mL/min,洗脱液pH为7,依次用水、10%、30%乙醇冲洗树脂柱,50%乙醇为洗脱液。纯化后的黄酮纯度435.4 mg/g。结论:该方法简便,操作简单,对辣椒叶总黄酮的纯化效果较好。  相似文献   

5.
为研究大孔树脂纯化还原型萝卜硫苷的最佳工艺及其抗氧化能力。实验以8种不同型号的大孔树脂对还原型萝卜硫苷的比吸附量、吸附率和洗脱率为指标筛选出最佳型号的大孔树脂,采用单因素考察和星点设计-效应面法优选出大孔树脂纯化还原型萝卜硫苷的工艺参数,通过测定纯化前后还原型萝卜硫苷提取物对DPPH自由基及ABTS~+·自由基的清除能力来表征其抗氧化活性。结果表明,HPD-722型大孔树脂纯化还原型萝卜硫苷效果最好,最佳纯化工艺为:上样液pH 5.3,上样流速2.5 BV/h,上样液浓度0.53 mg/mL;洗脱液为70%乙醇溶液,洗脱液体积为2.5 BV,洗脱液流速为1.5 BV/h,还原型萝卜硫苷纯度由0.404%提高到17.903%,纯度提高了44.35倍,纯化后的还原型萝卜硫苷GRH提取物与萝卜提取液相比,清除DPPH自由基和ABTS~+·自由基的能力分别提高了67.31和45.27倍。  相似文献   

6.
以甜叶菊渣为原料,采用大孔树脂吸附和溶剂萃取法相结合的方法,得到90%以上纯度的总黄酮.通过对大孔树脂及溶剂萃取法的各影响因素进行研究,确定纯化甜叶菊渣中总黄酮的最佳工艺条件:AB-8型大孔树脂吸附流速为2 mL/min、上样液质量浓度1.5 mg/mL、上样液pH值为3.5、上样量4 BV,解吸液为50%乙醇溶液、解吸量5 BV、解吸流速为1.5 mL/min.优化后的甜叶菊总黄酮平均纯度为50.11%.后经乙酸乙酯在常温条件下萃取5次,得到甜叶菊渣中总黄酮纯度为91.8%.结果表明:通过AB-8型大孔吸附树脂和乙酸乙酯萃取相结合的方法,可以很好地纯化甜叶菊总黄酮.  相似文献   

7.
以苹果渣多酚类化合物为吸附模型,制备一种可有效吸附分离苹果渣多酚的磁性树脂,研究其吸附、解吸效能,并就吸附和解吸效能、使用次数与普通大孔树脂进行比较。结果显示,5种普通树脂中D280、H103、AB-8对苹果渣多酚的吸附率均高于80%,AB-8、D3520树脂对苹果渣多酚的解吸率均高于90%,AB-8树脂的吸附率和解吸率最好;磁性大孔树脂吸附0.5 h后即可达到吸附平衡,吸附平衡后剩余液多酚质量浓度低于AB-8树脂吸附平衡后剩余液多酚质量浓度,吸附效能明显优于AB-8树脂;磁性大孔树脂解吸效能也略优于AB-8树脂;使用4 次后,磁性大孔树脂的吸附率仍然高于70%,稳定性优于AB-8树脂。可见,磁性大孔树脂是一种良好的苹果渣多酚吸附剂,有较好的工业化应用前景。  相似文献   

8.
为研究余甘子多酚的分离提取方法,本文以余甘原汁为原料,采用NKA-Ⅱ大孔吸附树脂,对上样量、洗脱剂、洗脱体积及洗脱速度等条件进行了考察,并对提取物的抗氧化活性进行了对比分析。通过试验确定了余甘原汁多酚的大孔树脂分离提取条件为:上样速度2BV/h,上样量0.8BV,洗脱剂为70%乙醇溶液,洗脱体积3BV,洗脱速度8BV/h,在此条件下NKA-Ⅱ大孔树脂对余甘原汁中多酚的吸附率可达到88.42%,洗脱率为90.93%,提取率为80.39%;对提取物的抗氧化活性分析显示,与分离前的余甘原汁干燥物相比,提取物的多酚和维生素C含量均提高了0.53倍,类超氧化物歧化酶活性(SODL)提高了1.4倍;铁离子还原能力(FRAP)明显高于分离前,对DPPH自由基、ABTS自由基及脂质氧化的半抑制浓度(IC50)均显著低于分离前的原汁干燥物,表明通过大孔吸附树脂分离,使余甘原汁中的多酚等抗氧化活性成分得到了有效的分离纯化。  相似文献   

9.
为获得大孔树脂纯化岩高兰多酚的最佳工艺,以岩高兰的地上部分为原料,通过考察6种不同类型树脂(HPD-100、X-5、AB-8、D101、HPD-600、NKA-II)的含水率、吸附率和解吸率的大小,筛选出一种最适合纯化岩高兰多酚的树脂。在此基础上,选择对纯化工艺影响较大的4种因素(上样浓度、乙醇浓度、洗脱流速、洗脱体积),进行响应面法分析得到最佳工艺。结果表明:HPD-600型大孔树脂对岩高兰多酚的纯化效果最佳,其最优工艺参数为:上样浓度0.84 mg·mL-1;乙醇浓度62.15%;洗脱流速0.67 mL·min-1;洗脱体积2.71 BV。该条件下,岩高兰多酚的提取率为229.18 mg·g-1,岩高兰多酚的纯度由8.11%提高到22.56%,回收率为67.78%。本研究为岩高兰多酚的纯化工艺提供了新的技术路线,也可为岩高兰提取物的研究和应用提供参考。  相似文献   

10.
研究优化聚酰胺树脂分离纯化白花丹参丹酚酸A的最佳工艺,并测试其提取物的抗氧化活性。以吸附量和解吸量为指标,利用静态吸附和动态吸附的方法,确定丹酚酸A的最佳分离纯化条件。结果表明聚酰胺树脂的最佳纯化工艺条件为:上样液丹酚酸A质量浓度为11 g/L,上样液体积流量为1.0 m L/min,上样量为150m L,洗脱溶剂为50%乙醇,洗脱体积流量为1.0 m L/min,洗脱体积为10 BV,纯化后丹酚酸A量可达40.36%。通过清除DPPH自由基和还原能力测定初步评判该工艺下的提取物的抗氧化活性,结果表明,该提取物具有良好的抗氧化活性。  相似文献   

11.
以川陈皮素和橘皮素为评价指标,筛选陈皮中多甲氧基黄酮类的大孔树脂纯化工艺。采用高效液相色谱法检测川陈皮素和橘皮素;采用静态和动态吸附、解吸实验筛选大孔树脂种类和工艺参数。D101型大孔树脂对陈皮中多甲氧基黄酮类吸附最好,最佳工艺条件为:洗脱剂为80%乙醇,洗脱剂用量为6倍柱体积(BV),最佳上样液浓度为500 mg/mL;经过处理后川陈皮素和橘皮素的纯度分别提高了3.7倍和3.2倍。大孔树脂能用于陈皮中多甲氧基黄酮类化合物的分离纯化。  相似文献   

12.
研究大孔吸附树脂纯化绿茄叶黄酮粗提取物的最佳工艺。通过比较10种大孔吸附树脂纯化黄酮粗提取物的吸附及解吸性能,筛选出纯化树脂XDA-1,并考察XDA-1树脂对黄酮粗提取物的静态、动态吸附与解吸的性能。结果表明,XDA-1树脂对黄酮粗提取物纯化的最佳工艺参数:吸附平衡时间8 h,吸附浓度2.00 mg/m L,p H值3.0,温度25℃,上样流速2 BV/h;解吸平衡时间2 h,解吸剂为p H值为3.0的体积分数80%的乙醇溶液,解吸流速3 BV/h,纯化倍数2.37。该研究证实大孔吸附树脂纯化绿茄叶黄酮的方法简单可行,为绿茄叶黄酮的分离纯化提供了实验依据。  相似文献   

13.
从金银花叶茎藤中提取总黄酮并用D-101大孔吸附树脂进行纯化,研究了D-101大孔吸附树脂对总黄酮的吸附及解吸附特性。结果表明,D-101树脂对金银花叶茎藤总黄酮分离纯化的最佳工艺参数为:上样液黄酮浓度0.538 mg/mL,静置吸附时间80 min,料液比1∶5(g∶mL),pH 2,流速为2 mL/min,以60 mL 75%的乙醇溶液洗脱,黄酮解吸率为94.5%,纯化后黄酮纯度为84.5%,是粗提液黄酮含量(16.8%)的5倍。金银花叶茎藤总黄酮在D-101树脂上的吸附等温线符合Langmuir等温吸附方程。吸附热力学参数表明吸附过程为自发、放热过程,吸附动力学可用Pseudo-second-order模型较好地拟合,30℃时其表观吸附速率常数为1.034×10-2g/mg.min。  相似文献   

14.
大孔吸附树脂纯化无柄金丝桃茎部总黄酮工艺研究   总被引:1,自引:0,他引:1  
通过静态吸附筛选纯化无柄金丝桃茎部总黄酮的最佳树脂,并利用静态吸附解吸动力学确定纯化无柄金丝桃茎部总黄酮的工艺参数。实验结果显示AB8大孔吸附树脂为纯化总黄酮的最佳树脂。最佳工艺参数为:上样液浓度为1.30 mg/m L,体积为60 m L,p H=4.0,流速为1.00 m L/min,树脂柱径高比为1∶10,70%乙醇溶液(p H=7.0)为洗脱剂。经AB8树脂纯化,无柄金丝桃茎部总黄酮的纯度由30.26%提高到了55.70%,AB8大孔吸附树脂纯化无柄金丝桃茎部的总黄酮效果明显,其工艺参数简单可行。  相似文献   

15.
大孔吸附树脂纯化乌饭树树叶黑色素的研究   总被引:4,自引:0,他引:4  
利用11种大孔吸附树脂对乌饭树树叶黑色素进行纯化分析,AB-8、NKA-9和S-8型大孔吸附树脂的静态吸附量和解吸率较高。由吸附与时间的关系曲线选择AB-8型大孔吸附树脂进行动态分析,得出最佳的纯化条件为:pH为5.05左右,溶液浓度为0.68~1.33 mg/mL,吸附流速为3 mL/min。使用7倍体积的95%乙醇解吸率可以超过95%。树脂使用三次后必须进行再生处理。  相似文献   

16.
以桑椹中黄酮类物质的吸附量和解吸率为指标,对比分析HZ-801、HZ-816、HZ-818等12种大孔吸附树脂对桑椹提取液的分离纯化效果,优选出最佳树脂HZ-801并通过对上样液pH、上样液质量浓度、上样量、吸附流速、洗脱剂质量浓度、洗脱剂用量、洗脱流速等影响因素的考察,确定最优工艺:吸附阶段上样液pH=4,上样液质量浓度0.45mg/mL,上样量420mL,吸附流速120mL/h,动态吸附量(干树脂)25.34mg/g,吸附率84.25%;洗脱阶段的洗脱剂体积分数为60%乙醇,洗脱剂用量270mL,洗脱流速120mL/h。此优化工艺条件下的洗脱率为85.78%,总黄酮纯度从23.64%提高到82.36%。  相似文献   

17.
采用聚酰胺吸附树脂对竹笋壳黄酮类化合物分离纯化,确定了聚酰胺吸附树脂对竹笋壳黄酮分离纯化的最佳工艺条件:制备5mg/mL的竹笋壳黄酮提取液90mL,调节pH=5,用1.8mL/min的流速上样后,用160mL的去离子水冲洗大量杂质,随后用120mL的60%乙醇溶液洗脱120mL。在此条件下,竹笋壳黄酮的纯度为58.4%,与大孔树脂纯化方法相比,该方法更具有良好的分离纯化效果。  相似文献   

18.
以紫色马铃薯"黑金刚"花青苷为原料,采用D101、HDP100A、HDP450A、NK-9、AB-8五种大孔吸附树脂对花青苷的吸附与解析特性进行了比较研究,并在此基础上,采用最佳大孔树脂对花青苷纯化过程中的静态、动态吸附和解析附条件进行了优化研究。结果表明AB-8大孔树脂具有较好的吸附和解析能力,是纯化紫色马铃薯花青苷的最佳树脂,较优纯化条件为:上样液花青苷浓度为0.028mg.g-1,上样液pH=2,洗脱液乙醇浓度为50%,洗脱液pH=1,吸附流速为1mL.min-1,洗脱流速为1mL.min-1。经大孔树脂纯化后,色价值比纯化前提高了7.55倍。  相似文献   

19.
通过采用11种大孔吸附树脂对榅桲多酚粗提物的静态吸附和解吸试验,筛选出适合分离纯化榅桲总多酚的最优树脂,并对其动态吸附特性和影响因素进行研究。结果表明:最佳纯化工艺条件为:AB-8大孔吸附树脂做吸附填料,上样液质量浓度0.04 g/m L,以2 BV/h的吸附速率进行吸附,上样量为11 BV,用3 BV蒸馏水除杂后,以50%乙醇溶液为洗脱剂,洗脱液用量为4 BV,洗脱流速控制在2 BV/h。经AB-8树脂吸附富集后,样品总多酚质量浓度达到了30.11 mg/g,是粗提物(9.55 mg/g)的3倍。对纯化前后的榅桲总多酚进行PTP1B的抑制作用研究,结果显示,榅桲总多酚对PTP1B有较强的抑制作用,即榅桲总多酚纯化前的IC50为78.14μg/m L,用AB-8树脂纯化后所得总多酚的IC50为16.12μg/m L。  相似文献   

20.
贾凯  刘俊  耿晓桐  张耀洲  肖颖 《广西植物》2023,43(1):183-189
为确定细叶十大功劳(Mahonia fortunei)叶中总生物碱大孔树脂分离纯化的最佳工艺条件及抗氧化活性,该研究通过比较6种大孔吸附树脂对总生物碱的静态吸附和解吸附效果,优选出最佳树脂并考察其动态纯化总生物碱的工艺条件,并采用DPPH法对纯化前后的总生物碱抗氧化性能进行评价。结果表明:(1)AB-8型大孔吸附树脂纯化效果最好,其最佳工艺条件为上样浓度50 mg·mL-1(生药浓度)、上样量26 BV、上样液流速2 BV·h-1;吸附完成后,以3 BV水洗后再以4 BV 50%乙醇洗脱,在此条件下得到的总生物碱含量由13.33%提高到56.64%。(2)各样品对DPPH自由基的清除能力为对照品Vc(IC50=10.39μg·mL-1)>总生物碱纯化品(IC50=39.08μg·mL-1)>总生物碱粗品(IC50=55.28μg·mL-1)。综上表明,AB-8型大孔吸附树脂可有效富集细叶十大功劳叶中总...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号