首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.  相似文献   

2.
3.
Programmed -1 ribosomal frameshifting (-1 PRF) is used by many positive-strand RNA viruses for translation of required products. Despite extensive studies, it remains unresolved how cis-elements just downstream of the recoding site promote a precise level of frameshifting. The Umbravirus Pea enation mosaic virus RNA2 expresses its RNA polymerase by -1 PRF of the 5′-proximal ORF (p33). Three hairpins located in the vicinity of the recoding site are phylogenetically conserved among Umbraviruses. The central Recoding Stimulatory Element (RSE), located downstream of the p33 termination codon, is a large hairpin with two asymmetric internal loops. Mutational analyses revealed that sequences throughout the RSE and the RSE lower stem (LS) structure are important for frameshifting. SHAPE probing of mutants indicated the presence of higher order structure, and sequences in the LS may also adapt an alternative conformation. Long-distance pairing between the RSE and a 3′ terminal hairpin was less critical when the LS structure was stabilized. A basal level of frameshifting occurring in the absence of the RSE increases to 72% of wild-type when a hairpin upstream of the slippery site is also deleted. These results suggest that suppression of frameshifting may be needed in the absence of an active RSE conformation.  相似文献   

4.
Translational recoding of mRNA through a –1 ribosomal slippage mechanism has been observed in RNA viruses and retrotransposons of both eukaryotes and prokaryotes. Whilst this provides a potentially powerful mechanism of gene regulation, the utilization of –1 translational frameshifting in regulating mammalian gene expression has remained obscure. Here we report a mammalian gene, Edr, which provides the first example of –1 translational recoding in a eukaryotic cellular gene. In addition to bearing functional frameshift elements that mediate expression of distinct polypeptides, Edr bears both CCHC zinc-finger and putative aspartyl protease catalytic site retroviral-like motifs, indicative of a relic retroviral-like origin for Edr. These features, coupled with conservation of Edr as a single copy gene in mouse and man and striking spatio-temporal regulation of expression during embryogenesis, suggest that Edr plays a functionally important role in mammalian development.  相似文献   

5.
There is something special about mRNA pseudoknots that allows them to elicit efficient levels of programmed -1 ribosomal frameshifting. Here, we present a synthesis of recent crystallographic, molecular, biochemical, and genetic studies to explain this property. Movement of 9 A by the anticodon loop of the aminoacyl-tRNA at the accommodation step normally pulls the downstream mRNA a similar distance along with it. We suggest that the downstream mRNA pseudoknot provides resistance to this movement by becoming wedged into the entrance of the ribosomal mRNA tunnel. These two opposing forces result in the creation of a local region of tension in the mRNA between the A-site codon and the mRNA pseudoknot. This can be relieved by one of two mechanisms; unwinding the pseudoknot, allowing the downstream region to move forward, or by slippage of the proximal region of the mRNA backwards by one base. The observed result of the latter mechanism is a net shift of reading frame by one base in the 5' direction, that is, a -1 ribosomal frameshift.  相似文献   

6.
The equilibrium unfolding pathway of a 41-nucleotide frameshifting RNA pseudoknot from the gag-pro junction of mouse intracisternal A-type particles (mIAP), an endogenous retrovirus, has been determined through analysis of dual optical wavelength, equilibrium thermal melting profiles and differential scanning calorimetry. The mIAP pseudoknot is an H-type pseudoknot proposed to have structural features in common with the gag-pro frameshifting pseudoknots from simian retrovirus-1 (SRV-1) and mouse mammary tumor virus (MMTV). In particular, the mIAP pseudoknot is proposed to contain an unpaired adenosine base at the junction of the two helical stems (A15), as well as one in the middle of stem 2 (A35). A mutational analysis of stem 1 hairpins and compensatory base-pair substitutions incorporated into helical stem 2 was used to assign optical melting transitions to molecular unfolding events. The optical melting profile of the wild-type RNA is most simply described by four sequential two-state unfolding transitions. Stem 2 melts first in two closely coupled low-enthalpy transitions at low tmin which the stem 3' to A35, unfolds first, followed by unfolding of the remainder of the helical stem. The third unfolding transition is associated with some type of stacking interactions in the stem 1 hairpin loop not present in the pseudoknot. The fourth transition is assigned to unfolding of stem 1. In all RNAs investigated, DeltaHvH approximately DeltaHcal, suggesting that DeltaCpfor unfolding is small. A35 has the thermodynamic properties expected for an extrahelical, unpaired nucleotide. Deletion of A15 destabilizes the stem 2 unfolding transition in the context of both the wild-type and DeltaA35 mutant RNAs only slightly, by DeltaDeltaG degrees approximately 1 kcal mol-1(at 37 degrees C). The DeltaA15 RNA is considerably more susceptible to thermal denaturation in the presence of moderate urea concentrations than is the wild-type RNA, further evidence of a detectable global destabilization of the molecule. Interestingly, substitution of the nine loop 2 nucleotides with uridine residues induces a more pronounced destabilization of the molecule (DeltaDeltaG degrees approximately 2.0 kcal mol-1), a long-range, non-nearest neighbor effect. These findings provide the thermodynamic basis with which to further refine the relationship between efficient ribosomal frameshifting and pseudoknot structure and stability.  相似文献   

7.
8.
The ribosomal frameshifting signal of the mouse embryonal carcinoma differentiation regulated (Edr) gene represents the sole documented example of programmed -1 frameshifting in mammalian cellular genes [Shigemoto,K., Brennan,J., Walls,E,. Watson,C.J., Stott,D., Rigby,P.W. and Reith,A.D. (2001), Nucleic Acids Res., 29, 4079-4088]. Here, we have employed site-directed mutagenesis and RNA structure probing to characterize the Edr signal. We began by confirming the functionality and magnitude of the signal and the role of a GGGAAAC motif as the slippery sequence. Subsequently, we derived a model of the Edr stimulatory RNA and assessed its similarity to those stimulatory RNAs found at viral frameshift sites. We found that the structure is an RNA pseudoknot possessing features typical of retroviral frameshifter pseudoknots. From these experiments, we conclude that the Edr signal and by inference, the human orthologue PEG10, do not represent a novel 'cellular class' of programmed -1 ribosomal frameshift signal, but rather are similar to viral examples, albeit with some interesting features. The similarity to viral frameshift signals may complicate the design of antiviral therapies that target the frameshift process.  相似文献   

9.
The ratio between proteins P27 and replicase of Cocksfoot mottle virus (CfMV) is regulated via a −1 programmed ribosomal frameshift (−1 PRF). A minimal frameshift signal with a slippery U UUA AAC heptamer and a downstream stem–loop structure was inserted into a dual reporter vector and directed −1 PRF with an efficiency of 14.4 ± 1.9% in yeast and 2.4 ± 0.7% in bacteria. P27-encoding CfMV sequence flanking the minimal frameshift signal caused ~2-fold increase in the −1 PRF efficiencies both in yeast and in bacteria. In addition to the expected fusion proteins, termination products ending putatively at the frameshift site were found in yeast cells. We propose that the amount of premature translation termination from control mRNAs played a role in determining the calculated −1PRF efficiency. Co-expression of CfMV P27 with the dual reporter vector containing the minimal frameshift signal reduced the production of the downstream reporter, whereas replicase co-expression had no pronounced effect. This finding allows us to propose that CfMV protein P27 may influence translation at the frameshift site but the mechanism needs to be elucidated.  相似文献   

10.
11.
Increased efficiencies of programmed -1 ribosomal frameshifting in yeast cells expressing mutant forms of ribosomal protein L3 are unable to maintain the dsRNA "Killer" virus. Here we demonstrate that changes in frameshifting and virus maintenance in these mutants correlates with decreased peptidyltransferase activities. The mutants did not affect Ty1-directed programmed +1 ribosomal frameshifting or nonsense-mediated mRNA decay. Independent experiments demonstrate similar programmed -1 ribosomal frameshifting specific defects in cells lacking ribosomal protein L41, which has previously been shown to result in peptidyltransferase defects in yeast. These findings are consistent with the hypothesis that decreased peptidyltransferase activity should result in longer ribosome pause times after the accommodation step of the elongation cycle, allowing more time for ribosomal slippage at programmed -1 ribosomal frameshift signals.  相似文献   

12.
Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U(6)A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U(6)A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.  相似文献   

13.
14.
15.
Deep mutational scanning provides unprecedented wealth of quantitative data regarding the functional outcome of mutations in proteins. A single experiment may measure properties (eg, structural stability) of numerous protein variants. Leveraging the experimental data to gain insights about unexplored regions of the mutational landscape is a major computational challenge. Such insights may facilitate further experimental work and accelerate the development of novel protein variants with beneficial therapeutic or industrially relevant properties. Here we present a novel, machine learning approach for the prediction of functional mutation outcome in the context of deep mutational screens. Using sequence (one-hot) features of variants with known properties, as well as structural features derived from models thereof, we train predictive statistical models to estimate the unknown properties of other variants. The utility of the new computational scheme is demonstrated using five sets of mutational scanning data, denoted “targets”: (a) protease specificity of APPI (amyloid precursor protein inhibitor) variants; (b-d) three stability related properties of IGBPG (immunoglobulin G-binding β1 domain of streptococcal protein G) variants; and (e) fluorescence of GFP (green fluorescent protein) variants. Performance is measured by the overall correlation of the predicted and observed properties, and enrichment—the ability to predict the most potent variants and presumably guide further experiments. Despite the diversity of the targets the statistical models can generalize variant examples thereof and predict the properties of test variants with both single and multiple mutations.  相似文献   

16.
The IS911 bacterial transposable element uses -1 programmed translational frameshifting to generate the protein required for its mobility: translation initiated in one gene (orfA) shifts to the -1 frame and continues in a second overlapping gene (orfB), thus generating the OrfAB transposase. The A-AAA-AAG frameshift site of IS911 is flanked by two stimulatory elements, an upstream Shine-Dalgarno sequence and a downstream stem-loop. We show here that, while they can act independently, these stimulators have a synergistic effect when combined. Mutagenic analyses revealed features of the complex stem-loop that make it a low-efficiency stimulator. They also revealed the dual role of the upstream Shine-Dalgarno sequence as (i) a stimulator of frameshifting, by itself more potent than the stem-loop, and (ii) a mandatory determinant of initiation of OrfB protein synthesis on an AUU codon directly preceding the A6G motif. Both roles rely on transient base pairing of the Shine-Dalgarno sequence with the 3' end of 16S rRNA. Because of its effect on frameshifting, the Shine-Dalgarno sequence is an important determinant of the level of transposase in IS911-containing cells, and hence of the frequency of transposition.  相似文献   

17.
Programmed frameshifting is one of the translational recoding mechanisms that read the genetic code in alternative ways. This process is generally programmed by signals at defined locations in a specific mRNA. In this study, we report the identification of hepta- and octo-uridine stretches as sole signals for programmed +1 and −1 ribosomal frameshifting during translation of severe acute respiratory syndrome coronavirus (SARS-CoV) ORF 3a variants. SARS-CoV ORF 3a encodes a minor structural protein of 274 amino acids. Over the course of cloning and expression of the gene, a mixed population of clones with six, seven, eight and nine T stretches located 14 nt downstream of the initiation codon was found. In vitro and in vivo expression of clones with six, seven and eight Ts, respectively, showed the detection of the full-length 3a protein. Mutagenesis studies led to the identification of the hepta- and octo-uridine stretches as slippery sequences for efficient frameshifting. Interestingly, no stimulatory elements were found in the sequences upstream or downstream of the slippage site. When the hepta- and octo-uridine stretches were used to replace the original slippery sequence of the SARS-CoV ORF 1a and 1b, efficient frameshift events were observed. Furthermore, the efficiencies of frameshifting mediated by the hepta- and octo-uridine stretches were not affected by mutations introduced into a downstream stem–loop structure that totally abolish the frameshift event mediated by the original slippery sequence of ORF 1a and 1b. Taken together, this study identifies the hepta- and octo-uridine stretches that function as sole elements for efficient +1 and −1 ribosomal frameshift events.  相似文献   

18.
Membrane protein variants with diminished conformational stability often exhibit enhanced cellular expression at reduced growth temperatures. The expression of “temperature-sensitive” variants is also typically sensitive to corrector molecules that bind and stabilize the native conformation. There are many examples of temperature-sensitive rhodopsin variants, the misfolding of which is associated with the molecular basis of retinitis pigmentosa. In this work, we employ deep mutational scanning to compare the effects of reduced growth temperature and 9-cis-retinal, an investigational corrector, on the plasma membrane expression of 700 rhodopsin variants in HEK293T cells. We find that the change in expression at reduced growth temperatures correlates with the response to 9-cis-retinal among variants bearing mutations within a hydrophobic transmembrane domain (TM2). The most sensitive variants appear to disrupt a native helical kink within this transmembrane domain. By comparison, mutants that alter the structure of a polar transmembrane domain (TM7) exhibit weaker responses to temperature and retinal that are poorly correlated. Statistical analyses suggest that this observed insensitivity cannot be attributed to a single variable, but likely arises from the composite effects of mutations on the energetics of membrane integration, the stability of the native conformation, and the integrity of the retinal-binding pocket. Finally, we show that the characteristics of purified temperature- and retinal-sensitive variants suggest that the proteostatic effects of retinal may be manifested during translation and cotranslational folding. Together, our findings highlight several biophysical constraints that appear to influence the sensitivity of genetic variants to temperature and small-molecule correctors.  相似文献   

19.
Programmed ribosomal -1 frameshifting is a non-standard decoding process occurring when ribosomes encounter a signal embedded in the mRNA of certain eukaryotic and prokaryotic genes. This signal has a mandatory component, the frameshift motif: it is either a Z_ZZN tetramer or a X_XXZ_ZZN heptamer (where ZZZ and XXX are three identical nucleotides) allowing cognate or near-cognate repairing to the -1 frame of the A site or A and P sites tRNAs. Depending on the signal, the frameshifting frequency can vary over a wide range, from less than 1% to more than 50%. The present study combines experimental and bioinformatics approaches to carry out (i) a systematic analysis of the frameshift propensity of all possible motifs (16 Z_ZZN tetramers and 64 X_XXZ_ZZN heptamers) in Escherichia coli and (ii) the identification of genes potentially using this mode of expression amongst 36 Enterobacteriaceae genomes. While motif efficiency varies widely, a major distinctive rule of bacterial -1 frameshifting is that the most efficient motifs are those allowing cognate re-pairing of the A site tRNA from ZZN to ZZZ. The outcome of the genomic search is a set of 69 gene clusters, 59 of which constitute new candidates for functional utilization of -1 frameshifting.  相似文献   

20.
The translation elongation feactor 1alpha (EF-1alpha) catalyzes the critical step of delivering aminoacyl-tRNAs to the elongating ribosome. A series of Saccharomyces cerevisiae strains containing mutant alleles of the TEF2 gene encoding EF-1alpha have phenotypes consistent with effects on cellular processes related to translation. These include (1) conditional growth defects, (2) antibiotic sensitivity or resistance, (3) altered +1 or -1 ribosomal frameshifting efficiencies, and (4) altered maintenance of the killer phenotype. Although all the mutant alleles were isolated as dominant +1 frameshift suppressors, the effects of these mutations on the cell are quite different when present as the only form of EF-1alpha. Allele-specific effects are observed with regard to their ability to alter the efficiency of programmed +1 frameshifting as opposed to programmed -1 ribosomal frameshifting. The significantly altered efficiency of -1 frameshifting in strains containing the TEF2-4 and TEF2-9 mutant alleles further correlates with a reduced ability to maintain the killer phenotype and the M1 satellite virus of L-A, an in vivo assay of translational fidelity. In light of the proposed models regarding the different A- and P-site occupancy states required for +1 or -1 ribosomal frameshifting, these results aid analysis of interactions between EF-1alpha and the translational apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号