首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleus locus coeruleus (LC) has been implicated in the processing of spinal reflexes following noxious stimuli. It has been demonstrated that noxious stimuli activate LC neuronal firing, but little is known about the neurochemical changes that might occur following such activation. To determine the effects of different noxious stimuli on LC neuronal activity, anaesthetized rats were exposed to mechanical (tail pinch), thermal (55 degrees C water), and chemical (5% Formalin injected in the hind paw) stimuli; the catechol oxidation current (CA.OC), an index of noradrenergic neuronal activity, in the locus coeruleus was monitored using differential normal pulse voltammetry. In addition, the effect of the opioid antagonist naloxone on the CA.OC in the LC was examined. Exposure to both mechanical and chemical stimuli significantly increased CA.OC indicating an increase in LC noradrenergic neuronal activity, while the thermal stimulus had no effect. Treatment with naloxone (1 mg/kg i.v.) had no effect on CA.OC in the LC. The results show a differential responsiveness of LC noradrenergic neurons to different modes of noxious stimuli and fail to demonstrate a tonic opioid regulation of these neurons in the anaesthetized rat.  相似文献   

2.
Central noradrenergic neurons from the locus coeruleus express unique plastic properties. The aim of this study was to identify factors that specifically regulate the development and the survival of the noradrenergic cells. Primary dissociated cultures of embryonic locus coeruleus (LC) neurons were established. Norepinephrine (NE) uptake was used as an index of maturation of the noradrenergic neurons. The noradrenergic cells were identified and quantified following immunocytochemical staining for tyrosine hydroxylase antibody. We have examined the effect of hippocampal target tissue and of cyclic-AMP (cAMP) on the development of these cells. Coculturing LC cells with a low density of hippocampal target cells, resulted in a significant increase in NE uptake. However, when the amount of hippocampal target cells was doubled an enormous decrease in NE uptake occurred. The target stimulatory effect was mediated by both neurons and glia, whereas the inhibitory effect was mediated by direct contact between target glia and LC neurons and detected only in the presence of serum. In addition to target effect, we also tested the effect of elevated intracellular cAMP level on NE uptake versus GABA uptake. GABA uptake served as a developmental index of the non noradrenergic cells. Increasing the intracellular cAMP level, by application of the membrane permeable analog dibutyryl cyclic AMP (DbcAMP), resulted in a selective stimulation of NE uptake, due to enhanced survival of noradrenergic neurons. GABA uptake and the number of non-noradrenergic cells were not changed in the presence of DbcAMP. DbcAMP could maintain the survival of LC neurons in the absence of glial cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We model spiking neurons in locus coeruleus (LC), a brain nucleus involved in modulating cognitive performance, and compare with recent experimental data. Extracellular recordings from LC of monkeys performing target detection and selective attention tasks show varying responses dependent on stimuli and performance accuracy. From membrane voltage and ion channel equations, we derive a phase oscillator model for LC neurons. Average spiking probabilities of a pool of cells over many trials are then computed via a probability density formulation. These show that: (1) Post-stimulus response is elevated in populations with lower spike rates; (2) Responses decay exponentially due to noise and variable pre-stimulus spike rates; and (3) Shorter stimuli preferentially cause depressed post-activation spiking. These results allow us to propose mechanisms for the different LC responses observed across behavioral and task conditions, and to make explicit the role of baseline firing rates and the duration of task-related inputs in determining LC response.  相似文献   

4.
Corticotropin-releasing factor (CRF) is both a major regulator of the hypothalamo-pituitary-adrenal (HPA) axis and the activity of the autonomic nervous system. Besides, it exerts numerous effects on other physiological functions such as appetite control, motor and cognitive behavior and immune function. The basis for these effects is constituted by its distribution in hypothalamic and extrahypothalamic brain areas, the latter being represented by limbic structures such as the central nucleus of the amygdala or by brain stem neurons such as the locus coeruleus (LC) or nucleus of the solitary tract (NTS). The effects of CRF are mediated through recently described CRF-receptor subtypes, whose molecular biology, biochemistry and pharmacological regulation are discussed in detail. In the second part of this review, we will focus on the physiology of CRF-systems in the brain, with a particular emphasis on cardiovascular regulation, respiration, appetite control and stress-related behavior. Finally, the role of the locus coeruleus in the control of CRF-mediated behavioral activities is discussed. The interaction of noradrenergic and CRF-neurons clearly implies that CRF appears to directly activate LC neurons in a stressful situation, thus ultimately coordinating the bodily response to a stressful stimulus.  相似文献   

5.
Behavioral, i.e. non-cognitive, disturbances, such as anxiety, agitation, sleep disturbances and depression occur in the majority of Alzheimer's disease (AD) patients, but their neurobiological basis is unknown. Disturbance of stress regulating systems, like the locus coeruleus, could play an important role. The locus coeruleus, the main production site of noradrenaline in the central nervous system, is involved in phenomena like attention, arousal and the response to the environment. In Alzheimer's disease, there is a marked reduction of noradrenergic neurons in the locus coeruleus. We studied the activity in the remaining locus coeruleus neurons and found an inverse relationship between the number of remaining neurons and the noradrenergic activity. This could indicate compensatory activity and loss of flexibility of this system. Clinically, the loss of flexibility could result in an impairment to focus attention and to respond to the environment. These results can be related to another stress related system, the hypothalamo-pituitary-adrenal-(HPA)axis. This means that further evaluation of both of these systems is necessary.  相似文献   

6.
GABAergic neurons specifically active during paradoxical sleep (PS) localized in the dorsal paragigantocellular reticular nucleus (DPGi) are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.  相似文献   

7.
Noradrenergic neurons of the locus coeruleus (LC) express the receptor tyrosine kinase c-ret, which binds ligands of the glial cell line-derived neurotrophic factor (GDNF) family. In the present study, we evaluated the function of neurturin (NTN), a GDNF family ligand whose function on LC neurons is unknown. Interestingly, we found that tyrosine hydroxylase (TH)-positive neurons in the LC express both GFRalpha1 and 2 receptors in a developmentally regulated fashion, suggesting a function for their preferred ligands: GDNF and NTN, respectively. Moreover, our results show that NTN mRNA expression is developmentally down-regulated in the LC and peaks in the postnatal hippocampus and cerebral cortex, during the target innervation period. In order to examine the function of NTN, we next performed LC primary cultures, and found that neither GDNF nor NTN promoted the survival of TH-positive neurons. However, both factors efficiently induced neurite outgrowth in noradrenergic neurons (147% and 149% over controls, respectively). Similarly, grafting of fibroblast cell lines engineered to express high levels of NTN did not prevent the loss of LC noradrenergic neurons in a 6-hydroxydopamine (6-OHDA) lesion model, but induced the sprouting of TH-positive cells. Thus our findings show that NTN does not promote the survival of LC noradrenergic neurons, but induces neurite outgrowth in developing noradrenergic neurons in vitro and in a model of neurodegeneration in vivo. These data, combined with data in the literature, suggest that GDNF family ligands are able to independently regulate neuronal survival and/or neuritogenesis.  相似文献   

8.
Disruptions of glutamatergic and noradrenergic signaling have been postulated to occur in depressive disorders. Glutamate provides excitatory input to the noradrenergic locus coeruleus (LC). In this study, the location of immunoreactivity against neuronal nitric oxide synthase (nNOS), an intracellular mediator of glutamate receptor activation, was examined in the normal human LC, and potential changes in nNOS immunoreactivity that might occur in major depression were evaluated. Tissue containing LC, and a non-limbic, LC projection area (cerebellum) was obtained from 11 to 12 matched pairs of subjects with major depression and control subjects lacking major psychiatric diagnoses. In the LC region, nNOS immunoreactivity was found in large neuromelanin-containing neurons, small neurons lacking neuromelanin, and glial cells. Levels of nNOS immunoreactivity were significantly lower in the LC (- 44%, p < 0.05), but not in the cerebellum, when comparing depressed with control subjects. nNOS levels were positively correlated with brain pH values in depressed, but not control, subjects in both brain regions. Low levels of nNOS in the LC may reflect altered excitatory input to this nucleus in major depression. However, pH appears to effect preservation of nNOS immunoreactivity in subjects with depression. This factor may contribute, in part, to low levels of nNOS in depression.  相似文献   

9.
Noradrenergic neurons of the rat locus coeruleus (LC) respond to noxious stimuli or peripheral nerve stimulation with a burst of spikes followed by a period of suppressed activity. During this period of post-activation suppression, responses to additional stimuli were attenuated. After antidromic activation of the LC there was also a period of reduced responsivity, presumably mediated by inhibitory recurrent LC collaterals. The suppression of LC unit firing which follows nerve stimulation was reduced by piperoxane, an α-adrenergic antagonist which is known to block the norepinephrine-mediated autoinhibitory action of recurrent LC axon collaterals. The specificity of piperoxane in blocking norepinephrine was shown by the fact that it did not antagonize several other putative transmitters in the LC (i.e., GABA, glycine, and met-enkephalin). It is concluded that the post-activation reduction of LC neuronal responsivity may be mediated in part through noradrenergic autoinhibitory mechanisms within the LC.  相似文献   

10.
In the present study, we investigated the involvement of rhombomere 1 patterning proteins in the regulation of the major noradrenergic centre of the brain, the locus coeruleus. Primary cultures of rat embryonic day 13.5 locus coeruleus were treated with fibroblast growth factor-8, noggin and members of the bone morphogenetic and Wnt protein families. We show that bone morphogenetic proteins 2, 5 and 7 increase and noggin decreases the number of tyrosine hydroxylase-positive locus coeruleus neurons. Interestingly, from all Wnts expressed in the first rhombomere by embryonic day 12.5 in the mice, we only found expression of wnt5a mRNA in the vicinity of the locus coeruleus. In agreement with this finding, from all Wnts studied in vitro, only Wnt5a increased the number of tyrosine hydroxylase-positive neurons in locus coeruleus cultures. Finally, we also found that fibroblast growth factor-8 increased the number of tyrosine hydroxylase-positive cells in locus coeruleus cultures. Neither of the identified factors affected the survival of tyrosine hydroxylase-positive locus coeruleus noradrenergic neurons or the proliferation of their progenitors or neurogenesis. Instead, our results suggest that these patterning signals of rhombomere 1 may work to promote the differentiation of noradrenergic progenitors at later stages of development.  相似文献   

11.
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.  相似文献   

12.
The locus coeruleus of the rat is richly innervated by many aminergic neurons varying in amine content and in site of origin. There are adrenergic and noradrenergic neurons originating in the medulla oblongata, dopaminergic from the hypothalamus, serotonergic from the mesencephalon and also intrinsic noradrenergic neurons in the locus coeruleus complex. Of these, adrenergic and dopaminergic inputs appear relatively specific and powerful.  相似文献   

13.
The noradrenergic neurons of the locus coeruleus (LC) are damaged in Parkinson's disease (PD). Neurotoxin ablation of the LC noradrenergic neurons has been shown to exacerbate the dopaminergic toxicity of MPTP, suggesting that the noradrenergic system protects dopamine neurons. We utilized mice that exhibit elevated synaptic noradrenaline (NA) by genetically deleting the noradrenaline transporter (NET), a key regulator of the noradrenergic system (NET KO mice). NET KO and wild-type littermates were administered MPTP and striatal dopamine terminal integrity was assessed by HPLC of monoamines, immmunoblotting for dopaminergic markers and tyrosine hydroxylase (TH) immunohistochemistry. MPTP significantly reduced striatal dopamine in wild-type mice, but not in the NET KO mice. To confirm that the protection observed in the NET KO mice was due to the lack of NET, we treated wild-type mice with the specific NET inhibitor, nisoxetine, and then challenged them with MPTP. Nisoxetine conferred protection to the dopaminergic system. These data indicate that NA can modulate MPTP toxicity and suggest that manipulation of the noradrenergic system may have therapeutic value in PD.  相似文献   

14.
Opiate dependence and withdrawal involve neuroadaptive responses in the central nervous system. A host of studies have previously implicated the A6 noradrenergic neurons of the pontine nucleus locus coeruleus (LC) as an important mediator of somatic signs observed upon withdrawal from opiates. Recent studies, however, are showing that noradrenergic neurons of the LC may not be solely involved in mediating somatic signs of withdrawal. The A2 noradrenergic neurons of the nucleus of the solitary tract (nucleus tractus solitarius [NTS]) in the caudal brainstem may be another possible site. Neurons in the nucleus paragigantocellularis lateralis (PGi), located in the rostral ventral medulla, which are known to send collateral projections to both the LC and the NTS, may co-modulate both noradrenergic nuclei in a parallel fashion, which may represent an anatomical substrate underlying the behavioral expression of opiate withdrawal. The PGi provides glutamatergic and opioid innervation to LC neurons. Hyperactivity of LC during opiate withdrawal arises, in part, from increased glutamate transmission in this pathway. The authors have recently shown that the excitatory transmitter, glutamate, co-exists with the endogenous opioid peptide, enkephalin, in a subset of axon terminals in the LC. Decreases in endogenous opioids in afferents to LC and NTS, following chronic opiate administration, may be equally important in modulating noradrenergic neurons following chronic opiate exposure, by removing a neurochemical system that would inhibit noradrenergic neurons. A persistent decrease in opioid peptide release from afferents during withdrawal would result in glutamate acting on postsynaptic targets, in an unopposed fashion. A parallel effect in opioid projections from PGi to the NTS would potentially support similar actions in this noradrenergic nucleus. The authors' recent data show that opioid-containing neurons in the PGi project to the NTS, and that enkephalin levels are decreased in opioid afferents to the NTS. This review summarizes data that the authors have collected regarding opioid expression changes in brainstem circuits (PGi-LC and PGi-NTS), following chronic morphine treatment, which may represent a model for understanding of adaptations in endogenous opioid circuits during drug dependence and withdrawal.  相似文献   

15.
The goal of this study was to identify the source of baroreceptor-related noradrenergic innervation of the diagonal band of Broca (DBB). Male Sprague-Dawley rats underwent sinoaortic denervation (SAD, n = 13) or sham SAD surgery (n = 13). We examined Fos expression produced by baroreceptor activation and dopamine-beta-hydroxylase immunofluorescence in hindbrain regions that contain noradrenergic neurons. Baroreceptors were stimulated by increasing blood pressure >40 mmHg with phenylephrine (10 microgram. kg(-1). min(-1) iv) in sham SAD and SAD rats. Controls were infused with 0.9% saline. Only the locus ceruleus (LC) demonstrated a baroreceptor-dependent increase in Fos immunoreactivity in dopamine-beta-hydroxylase-positive neurons. In a second experiment, normal rats received rhodamine-labeled microsphere injections in the DBB (n = 12) before phenylephrine or vehicle infusion. In these experiments, only the LC consistently contained Fos-positive cells after phenylephrine infusion that were retrogradely labeled from the DBB. Finally, we lesioned the LC with ibotenic acid and obtained extracellular recordings from identified vasopressin neurons in the supraoptic nucleus. LC lesions significantly reduced the number of vasopressin neurons that were inhibited by acute baroreceptor stimulation. Together, these results suggest that noradrenergic neurons in the LC participate in the baroreflex activation of the DBB and may thus be important in the baroreflex inhibition of vasopressin-releasing neurons in the supraoptic nucleus.  相似文献   

16.
The locus coeruleus (LC) is a major target of several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, very little is known of the trophic requirements of LC neurons. In the present work, we have studied the biological activity of neurotrophic factors from different families in E15 primary cultures of LC neurons. In agreement with previous results, neurotrophin‐3 (NT‐3) and also glial cell line‐ derived neurotrophic factor (GDNF) increased the number of embryonic LC noradrenergic neurons in the presence of serum. In serum‐free conditions, none of the factors tested, including NT‐3, GDNF, neurturin, basic fibroblast growth factor (bFGF), or bone morphogenetic protein‐2 (BMP‐2), promoted the survival of tyrosine hydroxylase (TH)‐immunoreactive neurons at 6 days in vitro. However, when BMP‐2 was coadministered with any of these factors the number of LC TH‐positive neurons increased twofold. Similar results were obtained by cotreatment of LC neurons with forskolin and NT‐3, bFGF, or BMP‐2. The strongest effect (a fourfold increase in the number of TH‐positive cells) was induced by cotreatment with forskolin, BMP‐2, and GDNF. Thus, our results show that LC neurons require multiple factors for their survival and development, and suggest that activation of LC neurons by bone morphogenetic proteins and cAMP plays a decisive role in conferring noradrenergic neuron responsiveness to several trophic factors. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 291–304, 2002; DOI 10.1002/neu.10034  相似文献   

17.
The firing rate of central locus coeruleus (LC) noradrenergic neurons and dorsal raphe (DR) serotonergic neurons was recorded in rats anaesthetized with chloral hydrate. The iontophoretic application or the i.v. perfusion of S3341, a new antihypertensive drug or clonidine decreased the frequency of discharge of LC neurons. Depending on the mode of administration clonidine was 54-63 times more potent than S3341. The selectivity of action of both drugs on alpha-2 vs. alpha-1 adrenoceptors was confirmed using yohimbine and prazosin: yohimbine completely blocked the inhibitory effect of S3341 or clonidine while prazosin did not prevent this effect. S3341 and clonidine regularly reduced the firing rate of DR neurons during i.v. perfusion but not during iontophoretic application. From these experiments is it concluded that S3341 and clonidine have a direct inhibitory effect on LC neurons via stimulation of alpha-2 autoreceptors and that both drugs have an indirect inhibitory effect on DR neurons, probably via impairment of noradrenergic transmission. Clinical studies show that S3341 induces much less sedative side effects than clonidine. In view of the great difference in the potency of these drugs to inhibit the firing rate of monoaminergic neurons which are known to be involved in sleep mechanisms, it is possible that the electrophysiological effects reported here relate to the sedative effects of these drugs.  相似文献   

18.
The spontaneous activity of locus coeruleus (LC) noradrenergic neurons was assessed by single unit recording in adult recovered rats undernourished at perinatal age as compared with wellnourished animals. Locus coeruleus activity, measured by the firing rate of noradrenergic neurons and the number of spontaneously active cells/track was significantly higher in deprived rats than in controls. In addition, dose-response curves for the inhibitory LC activity of clonidine showed a shift to the right in deprived animals indicating a subsensitivity of alpha2-adrenergic autoreceptors. This fact suggests an alteration in the negative feedback mechanism mediated by somatodentritic alpha2 autoreceptors that modulate the activity of LC neurons, and may account for the behavioral alterations attributed to early undernutrition. Repeated desipramine (DMI) administration to deprived rats reduced LC activity to values comparable to controls, which were not affected after a similar treatment. These data extend to previous reports on long-lasting or permanent plastic changes in the CNS induced by early undernutrition, which may be reverted by pharmacological manipulations. In addition, these results support the hypothesis that alterations induced by early undernutrition are in the same direction as and resemble those described for patients with panic disorders. Furthermore, together with behavioral alterations and selective anxiolytic effect of DMI and other drugs with antipanic effects described in early malnourished rats, the present data support the proposal that perinatally deprived rats may be a useful model for screening drugs with potential antipanic activity.  相似文献   

19.
D K Pitts  J Marwah 《Life sciences》1986,38(13):1229-1234
The effects of intravenous (i.v.) cocaine HCl on single identified spontaneously firing noradrenergic neurons in the nucleus locus coeruleus (LC) were studied in rats in vivo. Cocaine (0.25-1 mg/kg) produced inhibition of spontaneously firing LC neurons, which was reversed by the administration of the selective alpha 2-adrenoceptor antagonist, piperoxane (250 micrograms/kg, i.v.). Procaine, a local anesthetic that is structurally related to cocaine, did not inhibit LC neurons in doses up to 4 mg/kg, i.v. These results suggest that cocaine in low doses has significant central sympathomimetic effects at the single noradrenergic neuron level and that the inhibition of spontaneous activity may be mediated by alpha 2-adrenoceptors. Our results also indicate that cocaine in pharmacologically relevant doses, can significantly affect central alpha 2-adrenoceptor regulatory processes.  相似文献   

20.
Several classes of anxiolytic compounds have the common effect of decreasing the firing of noradrenergic neurons or attenuating the post- synaptic effects of noradrenergic activity. In order to determine whether the benzodiazepines, the most widely used anxiolytics, also decrease noradrenergic activity, the effect of acute intravenous injections of diazepam (0.1–2.0 mg/kg) and chlordiazepoxide (0.5–4.0 mg/kg) were administered to anesthetized rats while spontaneous activity of single neurons in the principal noradrenergic nucleus, the locus coeruleus, was recorded. Diazepam and chlordiazepoxide decreased spontaneous single unit activity in the locus coeruleus at relatively low doses. This net effect on noradrenergic systems is consistent with the actions of several classes of nonbenzodiazepine anxiolytics, and with the involvement of noradrenergic systems in the neural mechanisms of anxiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号