首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘静茹  孟莎莎  周卫辉 《遗传》2015,37(8):801-810
Neurexins是神经特异性突触蛋白,Neurexin1β结构的异常与孤独症密切相关。为分析孤独症相关基因NRXN1β最小启动子和调节基因转录的功能元件,本文构建了含NRXN1β基因上游调控区不同区域的荧光素酶报告基因质粒,转染HEK293细胞后,利用检测双荧光素酶报告基因的转录活性以确定NRXN1β基因最小启动子区,进而筛选出相应的显著增强或抑制报告基因活性的功能区;同时,为鉴定顺式作用元件,利用基因定点突变技术对基因功能区内和临近DNA序列进行连续的碱基突变;最后,采用转录因子预测工具对启动子功能区内的转录调控元件进行分析。结果首次发现NRXN1β最小启动子区位于-88~+156 bp,-88~-73 bp和+156~+149 bp可增强启动子活性,+229~+419 bp可抑制启动子活性,且-84~-63 bp为能够显著性增强启动子活性的顺式作用元件,该区域可能存在DBP(Albumin D-site-binding protein,DBP)和ABF1(Autonomously replicating sequence-binding factor 1,ABF1)两个转录因子结合位点。  相似文献   

2.
3.
The regulation of the synthesis of the inducible enzymes that mediate the reactions of the beta-ketoadipate pathway in Alcaligenes eutrophus has been examined by determining the inductive responses of the wild type and of mutants derived from it to metabolites of the pathway. The system of control differs in many respects from those which operate in the genera Pseudomonas and Acinetobacter.  相似文献   

4.
5.
6.
7.
Activation of integrins by Mn2+ is a benchmark in the integrin field, but how Mn2+ works and whether it reproduces physiological activation is unknown. We show that Mn2+ and high Mg2+ concentrations compete with Ca2+ at the ADMIDAS and shift the conformational equilibrium toward the open state, but the shift is far from complete. Additionally, replacement of Mg2+ by Mn2+ at the MIDAS increases the intrinsic affinities of both the high-affinity open and low-affinity closed states of integrins, in agreement with stronger binding of Mn2+ than Mg2+ to oxygen atoms. Mutation of the ADMIDAS increases the affinity of closed states and decreases the affinity of the open state and thus reduces the difference in affinity between the open and closed states. An important biological function of the ADMIDAS may be to stabilize integrins in highly discrete states, so that when integrins support cell adhesion and migration, their high and low affinity correspond to discrete on and off states, respectively.  相似文献   

8.
γδ T cells are a conserved population of lymphocytes that contributes to anti‐tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL‐2 or IL‐15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA‐181a as a key modulator of human γδ T cell differentiation. We observe that miR‐181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR‐181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR‐181a overexpression restricts their levels of NKG2D and TNF‐α. Upon in silico analysis, we identify two miR‐181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR‐181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next‐generation immunotherapies.  相似文献   

9.
The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal β-lactam biosynthesis genes are controlled by a complex regulatory network, e.g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of β-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.  相似文献   

10.
Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.  相似文献   

11.
12.
Tumor angiogenesis is mainly mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic factor produced by cancer cells and active on the endothelium through the VEGF receptor 2 (VEGFR-2). Here we identify a G-rich sequence within the proximal promoter region of vegfr-2, able to form an antiparallel G-quadruplex (G4) structure. This G4 structure can be efficiently stabilized by small molecules with the consequent inhibition of vegfr-2 expression. Functionally, the G4-mediated reduction of VEGFR-2 protein causes a switching off of signaling components that, converging on actin cytoskeleton, regulate the cellular events leading to endothelial cell proliferation, migration and differentiation. As a result of endothelial cell function impairment, angiogenic process is strongly inhibited by G4 ligands both in vitro and in vivo. Interestingly, the G4-mediated antiangiogenic effect seems to recapitulate that observed by using a specific interference RNA against vegfr-2, and it is strongly antagonized by overexpressing the vegfr-2 gene. In conclusion, we describe the evidence for the existence of G4 in the promoter of vegfr-2, whose expression and function can be markedly inhibited by G4 ligands, thereby revealing a new, and so far undescribed, way to block VEGFR-2 as target for anticancer therapy.  相似文献   

13.
14.
Complement fragment iC3b serves as a major opsonin for facilitating phagocytosis via its interaction with complement receptors CR3 and CR4, also known by their leukocyte integrin family names, αMβ2 and αXβ2, respectively. Although there is general agreement that iC3b binds to the αM and αX I-domains of the respective β2-integrins, much less is known regarding the regions of iC3b contributing to the αX I-domain binding. In this study, using recombinant αX I-domain, as well as recombinant fragments of iC3b as candidate binding partners, we have identified two distinct binding moieties of iC3b for the αX I-domain. They are the C3 convertase-generated N-terminal segment of the C3b α’-chain (α’NT) and the factor I cleavage-generated N-terminal segment in the CUBf region of α-chain. Additionally, we have found that the CUBf segment is a novel binding moiety of iC3b for the αM I-domain. The CUBf segment shows about a 2-fold higher binding activity than the α’NT for αX I-domain. We also have shown the involvement of crucial acidic residues on the iC3b side of the interface and basic residues on the I-domain side.  相似文献   

15.
16.
17.
18.
19.
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional “down” conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD “up”. Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13238-021-00871-6.  相似文献   

20.
Platelet agonists increase the affinity state of integrin αIIbβ3, a prerequisite for fibrinogen binding and platelet aggregation. This process may be triggered by a regulatory molecule(s) that binds to the integrin cytoplasmic tails, causing a structural change in the receptor. β3-Endonexin is a novel 111–amino acid protein that binds selectively to the β3 tail. Since β3-endonexin is present in platelets, we asked whether it can affect αIIbβ3 function. When β3-endonexin was fused to green fluorescent protein (GFP) and transfected into CHO cells, it was found in both the cytoplasm and the nucleus and could be detected on Western blots of cell lysates. PAC1, a fibrinogen-mimetic mAb, was used to monitor αIIbβ3 affinity state in transfected cells by flow cytometry. Cells transfected with GFP and αIIbβ3 bound little or no PAC1. However, those transfected with GFP/β3-endonexin and αIIbβ3 bound PAC1 specifically in an energy-dependent fashion, and they underwent fibrinogen-dependent aggregation. GFP/β3-endonexin did not affect levels of surface expression of αIIbβ3 nor did it modulate the affinity of an αIIbβ3 mutant that is defective in binding to β3-endonexin. Affinity modulation of αIIbβ3 by GFP/β3-endonexin was inhibited by coexpression of either a monomeric β3 cytoplasmic tail chimera or an activated form of H-Ras. These results demonstrate that β3-endonexin can modulate the affinity state of αIIbβ3 in a manner that is structurally specific and subject to metabolic regulation. By analogy, the adhesive function of platelets may be regulated by such protein–protein interactions at the level of the cytoplasmic tails of αIIbβ3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号