首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic control of skeletal development   总被引:10,自引:0,他引:10  
The skeleton is a single organ composed of >200 different elements spread throughout the body. These skeletal elements comprise two tissues: cartilage and bone. Both tissues contain specific cell type(s): chondrocytes in cartilage and osteoblasts and osteoclasts in bone. We are beginning to understand the genetic control of the differentiation and function of these cells through recent developments in mouse and human genetics, and also through the use of molecular biological and biochemical techniques. The most recent advances in terms of cell differentiation in the skeleton are presented in this review.  相似文献   

2.
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.  相似文献   

3.
4.
5.
Formation of cartilage by non-chondrogenic cell types   总被引:5,自引:0,他引:5  
Freshly excised embryonic rat skeletal muscle has been shown to form hyaline cartilage when organ cultured upon demineralized rat bone (bone matrix). Since skeletal muscle is composed of fibrous connective tissue (C.T.) as well as muscle cells, the cartilage could arise from either of these sources. The object of this study was to determine whether cartilage arose from fibrous connective tissue or muscle cells, or both, and whether the ability to form cartilage is limited to tissues derived from somatic mesoderm. Control experiments demonstrated that 19-day embryonic rat skeletal muscle formed cartilage when organ cultured on bone matrix after dissociation and cultivation in vitro, and that 11-day embryonic chick muscle also formed cartilage, although less reproducibly (3 out of 10 cases). Fibroblasts and skeletal muscle were cloned from similar suspensions of dissociated muscle in order to test these purified cell types. Dermis, vascular tissue, and tendons were mechanically removed prior to dissociation in order to eliminate fibroblasts from contaminant sources. Cloned fibroblasts, derived from rat skeletal muscle, formed cartilage in three out of three cases. It was not possible to clone sufficient rat skeletal muscle to place an aggregate onto bone matrix. An aggregate of several hundred chick skeletal muscle clones formed cartilage on bone matrix. The freshly excised C.T. capsules of embryonic chick thyroid and lung were tested for the ability to form cartilage as nonskeletal C.T. derivatives. The epithelial rudiments of thyroid and lung were also tested as endodermal derivatives. Chick cornea was similarly tested as an ectodermal derivative. Of these tissues, only the C.T. capsules formed cartilage. The results demonstrate that various C.T. cell types may alter their phenotype well after that stage at which their differentiation is thought to be stabilized, and that the ability to differentiate as cartilage may be common to all C.T. cells. The option of differentiating along a certain variety of pathways may depend more upon local conditions than on a predetermined pattern.  相似文献   

6.

Pannexins, large non-gap junction super family exists in vertebrates, play multiple roles in different cellular functions through their ATP release. Panx1-mediated adenosine 5′-triphosphate (ATP) release plays a vital role in physiological and pathophysiological conditions and is known major extracellular molecule in purinergic signaling. To modulate their function in vivo, a proper regulation of channel is necessary. Post-translational modifications are considered to be some regulating mechanisms for PANX1, while PANX2, PANX3 have been uncharacterized to date. Through their significant evidences, PANXs exclude from gap junction and conduits ATP release and other cellular molecules from cells by various mechanisms. PANX1 is most extensive characterized and implicated in ATP signaling and inflammatory processes. Despite the constant advances, much significance of PANX1 in physiological processes remains elusive. Recently, various research groups along with our group have reported the Cryo-EM structure of Panx1 channel and uncovered the hidden functions in structure–function mechanism as well as to provide the clear understanding in physiological and pathophysiological roles. These research groups reported the novel heptameric structure with contains 4 transmembrane helices (TM), two extracellular loops and one intracellular loop with N and C terminus located at the intracellular side. In addition, the structure contains a large pore of which an inhibitor CBX act as a plug that blocking the passage of substrate. In this context, this review will present current mechanistic understanding in structure and function together with significant physiological roles particularly ATP release in health and disease. As such, this review emphasizes on recent functional properties associated with novel heptameric channel and demystifies channel-mediated ATP release function.

  相似文献   

7.
A majority of people suffering from bone fractures fail to heal and develop a nonunion, which is a challenging orthopedic complication requiring complex and expensive treatment. Previous data showed the inhibition of some microRNAs (miRNAs or miRs) can enhance fracture healing. The objective of the present study is to explore effects of miR-367 on the osteoblasts growth and proliferation of mouse during fracture via the Wnt/β-catenin pathway by targeting PANX3. Primarily, the femur fracture model was successfully established in 66 (C57BL/6) 6-week–old male mice. To verify whether miR-367 target PANX3, we used the target prediction program and performed luciferase activity determination. Subsequently, to figure out the underlying regulatory roles of miR-367 in fracture, osteoblasts were elucidated by treatment with miR-367 mimic, miR-367 inhibitor, or siRNA against PANX3 to determine the expression of miR-367, siPANX3, β-catenin, and Wnt5b as well as cell proliferation and apoptosis. The results demonstrated that PANX3 was verified as a target gene of miR-367. MiR-367 was found to highly expressed but PANX3, β-catenin, and Wnt5b were observed poorly expressed in fracture mice. downregulated miR-367 increased the mRNA and protein expression of PANX3, β-catenin, and Wnt5b, increased cell growth, proliferation, and migration, while decreased cell apoptosis in osteoblasts. Altogether, our study demonstrates that the downregulation of miR-367 may promote osteoblasts growth and proliferation in fracture through the activation of the PANX3-dependent Wnt/β-catenin pathway.  相似文献   

8.

Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.

  相似文献   

9.
TGF-β has been implicated in the proliferation and differentiation of chondrocytes and osteoblasts. However, the in vivo function of TGF-β in skeletal development is unclear. In this study, we investigated the role of TGF-β signaling in growth plate development by creating mice with a conditional knockout of the TGF-β type I receptor ALK5 (ALK5CKO) in skeletal progenitor cells using Dermo1-Cre mice. ALK5CKO mice had short and wide long bones, reduced bone collars, and trabecular bones. In ALK5CKO growth plates, chondrocytes proliferated and differentiated, but ectopic cartilaginous tissues protruded into the perichondrium. In normal growth plates, ALK5 protein was strongly expressed in perichondrial progenitor cells for osteoblasts, and in a thin chondrocyte layer located adjacent to the perichondrium in the peripheral cartilage. ALK5CKO growth plates had an abnormally thin perichondrial cell layer and reduced proliferation and differentiation of osteoblasts. These defects in the perichondrium likely caused the short bones and ectopic cartilaginous protrusions. Using tamoxifen-inducible Cre-ER™-mediated ALK5-deficient primary calvarial cell cultures, we found that TGF-β signaling promoted osteoprogenitor proliferation, early differentiation, and commitment to the osteoblastic lineage through the selective MAPKs and Smad2/3 pathways. These results demonstrate the important roles of TGF-β signaling in perichondrium formation and differentiation, as well as in growth plate integrity during skeletal development.  相似文献   

10.
Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.  相似文献   

11.
We have cloned the genes PANX1, PANX2 and PANX3, encoding putative gap junction proteins homologous to invertebrate innexins, which constitute a new family of mammalian proteins called pannexins. Phylogenetic analysis revealed that pannexins are highly conserved in worms, mollusks, insects and mammals, pointing to their important function. Both innexins and pannexins are predicted to have four transmembrane regions, two extracellular loops, one intracellular loop and intracellular N and C termini. Both the human and mouse genomes contain three pannexin-encoding genes. Mammalian pannexins PANX1 and PANX3 are closely related, with PANX2 more distant. The human and mouse pannexin-1 mRNAs are ubiquitously, although disproportionately, expressed in normal tissues. Human PANX2 is a brain-specific gene; its mouse orthologue, Panx2, is also expressed in certain cell types in developing brain. In silico evaluation of Panx3 expression predicts gene expression in osteoblasts and synovial fibroblasts. The apparent conservation of pannexins between species merits further investigation.  相似文献   

12.
In adult individuals when most tissues have progressively lost the ability to regenerate, bone maintains the potential for a continuous self remodeling. The bone marrow has been so far the main recognized source of osteoprogenitor cells that contribute to the turnover of the skeletal scaffold. The possibility though exists that a pool of osteoprogenitor cells resides within other adult tissues and in particular, as reported previously, in other connective tissues such as fat and skeletal muscle. In an attempt to identify an alternative source of osteoprogenitor cells other than bone marrow we looked into the skeletal muscle. A plastic adhering cell population, from now on referred to as skeletal muscle derived cells (SMDCs), was obtained from biopsies of human skeletal muscle. SMDCs were clonogenic and displayed a fibroblast-like morphology. The isolated cell population had a mesenchymal origin as indicated by abundant expression of type I collagen, fibronectin, and vimentin and appeared heterogeneous. SMDCs were positive for alpha smooth actin, and to a lesser extent for desmin and alpha sarcomeric myosin, two specific markers of the myogenic phenotype. Surprisingly though SMDCs expressed early markers of an osteogenic commitment as indicated by positive staining for alkaline phosphatase, osteopontin, and osteonectin. Under the appropriate stimuli, these cells deposited in vitro a mineralized bone matrix and a proteoglycan rich matrix. In addition, SMDCs cultured in the presence of low serum and insulin differentiated towards adipocytes developing abundant lipid droplets in the cytoplasm. Furthermore SMDCs formed three-dimensional bone tissue in vivo when implanted in an immunodeficient mouse, and a mature cartilage rudiment when maintained as a pellet culture. In summary, we report the isolation and characterization of a cell population from the human skeletal muscle not only able to express in vitro specific markers of distinct mesenchymal lineages (adipogenic, chondrogenic, and osteogenic), but most importantly, able to complete the differentiation pathway leading to the formation of bone and cartilage. In this respect SMDCs resemble bone marrow stromal cells (BMSCs).  相似文献   

13.
Side population (SP) cells isolated from bone marrow, skeletal muscle, and skin have been shown to engraft in dystrophic muscle. However, there have been questions on the phenotypical heterogeneity, tissue of origin, and relationships among SP cell populations extracted from different tissues. Studies on bone marrow SP cells have followed a consistent protocol for their isolation and results obtained are concordant. In contrast, protocols for the isolation of muscle SP cells vary greatly, and consequently reports on their phenotype, differentiation potential and origin have been inconsistent. To address this controversy, we demonstrate that isolation parameters, such as tissue dissociation, cell counting, Hoechst concentration, and stringency in the selection of SP cells, have an effect on the yield, viability, and homogeneity of SP cells derived from bone marrow, skeletal muscle, and skin. In this paper, we demonstrate that SP cells isolated from the bone marrow are distinct from SP cells extracted from skeletal muscle and skin tissues. This study offers an explanation for the controversy surrounding muscle SP cells, provides a detailed standardized protocol for their isolation, and highlights basic guidelines for reproducible and reliable isolation of SP cells from any tissue.  相似文献   

14.
Summary Recent studies have noted the presence of putative stem cells derived from the connective tissues associated with skeletal muscle, heart, and dermis. Long-term continuous cultures of these cells from each tissue demonstrated five distinct phenotypes of mesodermal origin, i.e. muscle, fat, cartilage, bone, and connective tissue. Clonal analysis was performed to determine whether these morphologies were the result of a mixed population of lineage-committed stem cells or the differentiation of pluripotent stem cells or both. Putative stem cells from four tissues (skeletal muscle, dermis, atria, and ventricle) were isolated and cloned. Combined, 1158 clones were generated from the initial cloning and two subsequent subclonings. Plating efficiency approximated 5.8%. Approximately 70% of the 1158 clones displayed a pure stellate morphology, while the remaining clones contained a mixture of stellate, chondrogenic- or osteogenic-like morphologies or both. When cultured in the presence of dexamethasone, cells from all clones differentiated in a time- and concentration-dependent manner into muscle, fat, cartilage, and bone. These results suggest that pluripotent mesenchymal stem cells are present within the connective tissues of skeletal muscle, dermis, and heart and may prove useful for studies concerning the regulation of stem cell differentiation, wound healing, and tissue restoration, replacement and repair.  相似文献   

15.
Role of Runx genes in chondrocyte differentiation   总被引:12,自引:0,他引:12  
Runx2/Cbfa1 plays a central role in skeletal development as demonstrated by the absence of osteoblasts/bone in mice with inactivated Runx2/Cbfa1 alleles. To further investigate the role of Runx2 in cartilage differentiation and to assess the potential of Runx2 to induce bone formation, we cloned chicken Runx2 and overexpressed it in chick embryos using a retroviral system. Infected chick wings showed multiple phenotypes consisting of (1) joint fusions, (2) expansion of carpal elements, and (3) shortening of skeletal elements. In contrast, bone formation was not affected. To investigate the function of Runx2/Cbfa1 during cartilage development, we have generated transgenic mice that express a dominant negative form of Runx2 in cartilage. The selective inactivation of Runx2 in chondrocytes results in a severe shortening of the limbs due to a disturbance in chondrocyte differentiation, vascular invasion, osteoclast differentiation, and periosteal bone formation. Analysis of the growth plates in transgenic mice and in chick limbs shows that Runx2 is a positive regulator of chondrocyte differentiation and vascular invasion. The results further indicate that Runx2 promotes chondrogenesis either by maintaining or by initiating early chondrocyte differentiation. Furthermore, Runx2 is essential but not sufficient to induce osteoblast differentiation. To analyze the role of runx genes in skeletal development, we performed in situ hybridization with Runx2- and Runx3-specific probes. Both genes were coexpressed in cartilaginous condensations, indicating a cooperative role in the regulation of early chondrocyte differentiation and thus explaining the expansion/maintenance of cartilage in the carpus and joints of infected chick limbs.  相似文献   

16.
Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.  相似文献   

17.
Pannexins (PANX) are a family of three channel-forming membrane glycoproteins expressed in the skin. Previous studies have focused on the role of PANX1 and PANX3 in the regulation of cellular functions in skin cells while PANX2, the largest member of this protein family, has not been investigated. In the current study, we explored the temporal PANX2 expression in murine skin and found that one Panx2 splice variant (Panx2-202) tends to be more abundant at the protein level and is continuously expressed in developed skin. PANX2 was detected in the suprabasal layers of the mouse epidermis and up-regulated in an in vitro model of rat epidermal keratinocyte differentiation. Furthermore, we show that in apoptotic rat keratinocytes, upon UV light B (UVB)-induced caspase-3/7 activation, ectopically overexpressed PANX2 is cleaved in its C-terminal domain at the D416 residue without increasing the apoptotic rate measured by caspase-3/7 activation. Notably, CRISPR-Cas9 mediated genetic deletion of rat Panx2 delays but does not impair caspase-3/7 activation and cytotoxicity in UVB-irradiated keratinocytes. We propose that endogenous PANX2 expression in keratinocytes promotes cell death after UVB insult and may contribute to skin homeostasis.  相似文献   

18.
Pannexin 1 (PANX1) is a glycoprotein that forms large pore channels capable of passing ions and metabolites such as ATP for cellular communication. PANX1 has been implicated in many diseases including breast cancer and melanoma, where inhibition or deletion of PANX1 reduced the tumorigenic and metastatic properties of the cancer cells. We interrogated the effect of single amino acid changes in various PANX1 domains using naturally occurring variants reported in cancer patient tumors. We found that a previously reported variant (Q5H) is present in cancer cells, but was not different from the wild type (Q5) in glycosylation, trafficking, or channel function and did not affect cellular properties. We discovered that the Q5H variant is in fact the highly conserved ancestral allele of PANX1 with 89% of humans carrying at least one Q5H allele. Another mutated form Y150F, found in a melanoma patient tumor, prevented phosphorylation at Y150 as well as complex N-glycosylation while increasing intracellular localization. Sarcoma (SRC) is the predicted kinase to phosphorylate the Y150 residue, and its phosphorylation is not likely to be constitutive, but rather dynamically regulated. The Y150 phosphorylation site is the first one reported to play a role in regulating posttranslational modifications and trafficking of PANX1, with potential consequences on its large-pore channel structure and function in melanoma cells.  相似文献   

19.
Osteogenin, a novel bone differentiation factor isolated from bone, has been recently purified and the amino acid sequence determined. Osteogenin in conjunction with a collagenous bone matrix substratum induces cartilage and bone formation in vivo. In order to understand the developmental role of osteogenin during cartilage and bone morphogenesis we examined the binding and distribution of iodinated osteogenin in developing rat embryos. Whole embryo tissue sections were made from 11, 12, 13, 15, 18, and 20 day fetuses. The specific binding of osteogenin at different stages of rat embryonic development was determined by autoradiography. Maximal binding was observed in mesodermal tissues such as cartilage, bone, perichondrium, and periosteum. During Days 11-15, peak binding was localized to perichondrium during limb and vertebral morphogenesis. By Day 18 periosteum exhibited the highest concentration of autoradiographic grains. Osteogenin was also localized in developing membranous bones of the calvarium and other craniofacial bones. Considerably less binding was observed, in decreasing order, in muscle, liver, spleen, skin, brain, heart, kidney, and intestine. The observed maximal binding during skeletal morphogenesis implies a developmental role for osteogenin.  相似文献   

20.
Mesenchymal stem cells (MSCs) can differentiate into a variety of cell types. MSCs exist in several tissues such as the bone marrow, adipose, muscle, cartilage, and tendon. This differentiation potential makes MSCs candidates for cell-based therapeutic strategies for mesenchymal tissue injuries. MSCs can be prepared from bone marrow (BM-MSCs) and adipose (AD-MSCs); however, these MSCs exhibit senescence-associated growth arrest and display inevitable heterogeneity. We established several AD-MSC cell lines from a p53-knockout (KO) mouse. These cell lines were immortalized, but no cell lines grew anchorage-independently, suggesting that they are not cancerous. They differentiated into adipocytes, osteoblasts, and chondrocytes by treatment with certain stimuli. Moreover, following injection into the tail vein, the cells migrated into the wounded region of the liver and differentiated into hepatocytes. We succeeded in establishing several AD-MSC clonal cell lines that maintain the tissue-specific markers and characteristics of the developmental phase. These clonal cell lines will serve as important tools to study the mechanism of differentiation of MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号