首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T A Holak  J H Prestegard 《Biochemistry》1986,25(19):5766-5774
Sequence-specific assignments of 1H NMR resonances were obtained for the backbone protons in acyl carrier protein (ACP) from Escherichia coli, a protein of 77 residues. The observations, in the NOESY spectra, of 1H-1H sequential and medium-range connectivities indicate the presence of three or four alpha-helical segments joined by short sequences of mixed conformations. The observations are used to refine a secondary structure model previously proposed on the basis of a Chou-Fasman algorithm [Rock, C. O., & Cronan, J. E., Jr. (1979) J. Biol. Chem. 254, 9778-9785].  相似文献   

2.
Two types of homonuclear proton COSY experiments are shown to be useful in making resonance assignments in cyanide-ligated cytochrome c peroxidase, a 34 kDa paramagnetic heme protein. Both magnitude COSY and phase-sensitive COSY experiments provide spectra useful for making proton assignments to resonances of strongly relaxed hyperfine-shifted protons. This initial investigation demonstrates that COSY experiments combined with NOESY experiments are feasible for hyperfine-shifted protons of paramagnetic proteins larger than metmyoglobins and ferricytochromes c, for which the nuclear spin-lattice relaxation times are in the range 70-300 ms. Taken together, COSY and NOESY experiments, although not yet widely applied to paramagnetic metalloproteins, provide a reliable protocol for accurately assigning hyperfine-shifted resonances that are part of a metalloenzyme's active site. Specific examples of expected proton homonuclear COSY connectivities that were not observed in these experiments are presented, and utilization of COSY with respect to the proton resonance line widths and apparent nuclear relaxation times is discussed. The COSY experiments presented here provide valuable verification of previously proposed hyperfine resonance assignments for cyanide-ligated cytochrome c peroxidase, which were made by using NOESY experiments alone, and in several instances expand these assignments to additional protons in particular amino acid spin systems.  相似文献   

3.
Sequence-specific 1H NMR assignments are reported for the active L-tryptophan-bound form of Escherichia coli trp repressor. The repressor is a symmetric dimer of 107 residues per monomer; thus at 25 kDa, this is the largest protein for which such detailed sequence-specific assignments have been made. At this molecular mass the broad line widths of the NMR resonances preclude the use of assignment methods based on 1H-1H scalar coupling. Our assignment strategy centers on two-dimensional nuclear Overhauser spectroscopy (NOESY) of a series of selectively deuterated repressor analogues. A new methodology was developed for analysis of the spectra on the basis of the effects of selective deuteration on cross-peak intensities in the NOESY spectra. A total of 90% of the backbone amide protons have been assigned, and 70% of the alpha and side-chain proton resonances are assigned. The local secondary structure was calculated from sequential and medium-range backbone NOEs with the double-iterated Kalman filter method [Altman, R. B., & Jardetzky, O. (1989) Methods Enzymol. 177, 218-246]. The secondary structure agrees with that of the crystal structure [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L., & Sigler, P. B. (1985) Nature 317, 782], except that the solution state is somewhat more disordered in the DNA binding region and in the N-terminal region of the first alpha-helix. Since the repressor is a symmetric dimer, long-range intersubunit NOEs were distinguished from intrasubunit interactions by formation of heterodimers between two appropriate selectively deuterated proteins and comparison of the resulting NOESY spectrum with that of each selectively deuterated homodimer. Thus, from spectra of three heterodimers, long-range NOEs between eight pairs of residues were identified as intersubunit NOEs, and two additional long-range intrasubunits NOEs were assigned.  相似文献   

4.
One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca2+ binding to site II, the site responsible for triggering muscle contraction. Spin systems of the nine Phe and three Tyr residues were elucidated from DQF-COSY and NOESY spectra. Comparison of the pattern of NOE connectivities obtained from a NOESY spectrum of cTnC3 with a model of cTnC based on the crystal structure of skeletal TnC permitted sequence-specific assignment of all three Tyr residues, as well as Phe-101 and Phe-153. NOESY spectra and calcium titrations of cTnC3 monitoring the aromatic region of the 1H NMR spectrum permitted localization of six of the nine Phe residues to either the N- or C-terminal domain of cTnC3. Analysis of the downfield-shifted C alpha H resonances permitted sequence-specific assignment of those residues involved in the beta-strand structures which are part of the Ca(2+)-binding loops in both the N- and C-terminal domains of cTnC3. The short beta-strands in the N-terminal domain of cTnC3 were found to be present and in close proximity even in the absence of Ca2+ bound at site II. Using these assignments, we have examined the effects of mutating Asp-65 to Ala, CBM-IIA, a functionally inactive mutant which is incapable of binding Ca2+ at site II [Putkey, J.A., Sweeney, H. L., & Campbell, S. T. (1989) J. Biol. Chem. 264, 12370]. Comparison of the apo, Mg(2+)-, and Ca(2+)-bound forms of cTnC3 and CBM-IIA demonstrates that the inability of CBM-IIA to trigger muscle contraction is not due to global structural changes in the mutant protein but is a consequence of the inability of CBM-IIA to bind Ca2+ at site II. The pattern of NOEs between aromatic residues in the C-terminal domain is nearly identical in cTnC3 and CBM-IIA. Similar interresidue NOEs were also observed between Phe residues assigned to the N-terminal domain in the Ca(2+)-saturated forms of both cTnC3 and CBM-IIA. However, chemical shift changes were observed for the N-terminal Phe residues in CBM-IIA. This suggests that binding of Ca2+ to site II alters the chemical environment of the residues in the N-terminal hydrophobic cluster without disrupting the spatial relationship between the Phe residues located in helices A and D.  相似文献   

5.
S D Emerson  G La Mar 《Biochemistry》1990,29(6):1545-1556
Steady-state nuclear Overhauser effects (NOE), two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY), and 2D spin correlation spectroscopy (COSY) have been applied to the fully paramagnetic low-spin, cyanide-ligated complex of sperm whale ferric myoglobin to assign the majority of the heme pocket side-chain proton signals and the remainder of the heme signals. It is shown that the 2D NOESY map reveals essentially all dipolar connectivities observed in ordinary 1D NOE experiments and expected on the basis of crystal coordinates, albeit often more weakly than in a diamagnetic analogue. For extremely broad (approximately 600-Hz) and rapidly relaxing (Tf1 approximately 3 ms) signals which show no NEOSY peaks, we demonstrate that conventional steady-state NOEs obtained under very rapid pulsing conditions still allow detection of the critical dipoar connectivities that allow unambiguous assignments. The COSY map was found to be generally less useful for the hyperfine-shifted residues, with cross peaks detected only for protons greater than 6 A from the iron. Nevertheless, numerous critical COSY cross peaks between strongly hyperfine-shifted peaks were resolved and assigned. In all, 95% (53 of 56 signals) of the total proton sets within approximately 7.5 A of the iron, the region experiencing the strongest hyperfine shifts and paramagnetic relaxation, are now unambiguously assigned. Hence it is clear that the 2D methods can be profitably applied to paramagnetic proteins. The scope and limitations of such application are discussed. The resulting hyperfine shift pattern for the heme confirmed expectations based on model compounds. In contrast, while exhibiting fortuitous 1H NMR spectral similarities, a major discrepancy was uncovered between the hyperfine shift pattern of the axially bound (F8 histidyl) imidazole in the protein and that of the imidazole in a relevant model compound [Chacko, V.P., & La Mar, G. N. (1982) J. Am. Chem. Soc. 104, 7002-7007], providing direct evidence for a protein-based deformation of axial bonding in the protein.  相似文献   

6.
The three-dimensional structure of the complex between calmodulin (CaM) and a peptide corresponding to the N-terminal portion of the CaM-binding domain of the plasma membrane calcium pump, the peptide C20W, has been solved by heteronuclear three-dimensional nuclear magnetic resonance (NMR) spectroscopy. The structure calculation is based on a total of 1808 intramolecular NOEs and 49 intermolecular NOEs between the peptide C20W and calmodulin from heteronuclear-filtered NOESY spectra and a half-filtered experiment, respectively. Chemical shift differences between free Ca(2+)-saturated CaM and its complex with C20W as well as the structure calculation reveal that C20W binds solely to the C-terminal half of CaM. In addition, comparison of the methyl resonances of the nine assigned methionine residues of free Ca(2+)-saturated CaM with those of the CaM/C20W complex revealed a significant difference between the N-terminal and the C-terminal domain; i.e., resonances in the N-terminal domain of the complex were much more similar to those reported for free CaM in contrast to those in the C-terminal half which were significantly different not only from the resonances of free CaM but also from those reported for the CaM/M13 complex. As a consequence, the global structure of the CaM/C20W complex is unusual, i.e., different from other peptide calmodulin complexes, since we find no indication for a collapsed structure. The fine modulation in the peptide protein interface shows a number of differences to the CaM/M13 complex studied by Ikura et al. [Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Science 256, 632-638]. The unusual binding mode to only the C-terminal half of CaM is in agreement with the biochemical observation that the calcium pump can be activated by the C-terminal half of CaM alone [Guerini, D., Krebs, J., and Carafoli, E. (1984) J. Biol. Chem. 259, 15172-15177].  相似文献   

7.
B H Oh  J L Markley 《Biochemistry》1990,29(16):4012-4017
All the nitrogen signals from the amino acid side chains and 80 of the total of 98 backbone nitrogen signals of the oxidized form of the 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120 were assigned by means of a series of heteronuclear two-dimensional experiments [Oh, B.-H. Mooberry, E. S., & Markley, J. L. (1990) Biochemistry (second paper of three in this issue )]. Two additional nitrogen signals were observed in the one-dimensional 15N NMR spectrum and classified as backbone amide resonances from residues whose proton resonances experience paramagnetic broadening. The one-dimensional 15N NMR spectrum shows nine resonances that are hyperfine shifted and broadened. From this inventory of diamagnetic nitrogen signals and the available X-ray coordinates of a related ferredoxin [Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T., & Matsubara, H. (1981) J. Biochem. 90, 1763-1773], the resolved hyperfine-shifted 15N peaks were attributed to backbone amide nitrogens of the nine amino acids that share electrons with the 2Fe.2S* center or to backbone amide nitrogens of two other amino acids that are close to the 2Fe.2S* center. The seven 15N signals that are missing and unaccounted for probably are buried under the envelope of amide signals. 1H NMR signals from all the amide protons directly bonded to the seven missing and nine hyperfine-shifted nitrogens were too broad to be resolved in conventional 2D NMR spectra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The human fibrinogen gamma-chain, C-terminal fragment, residues 385-411, i.e., KIIPFNRLTIGEGQQHHLGGAKQAGDV, contains two biologically important functional domains: (1) fibrinogen gamma-chain polymerization center and (2) platelet receptor recognition domain. This peptide was isolated from cyanogen bromide degraded human fibrinogen and was investigated by 1H NMR (500 MHz) spectroscopy. Sequence-specific assignments of NMR resonances were obtained for backbone and side-chain protons via analysis of 2D NMR COSY, double quantum filtered COSY, HOHAHA, and NOESY spectra. The N-terminal segment from residues 385-403 seems to adopt a relatively fixed solution conformation. Strong sequential alpha CH-NH NOESY connectivities and a continuous run of NH-NH NOESY connectivities and several long-lived backbone NH protons strongly suggest the presence of multiple-turn or helix-like structure for residues 390 to about 402. The conformation of residues 403-411 seems to be much less constrained as evidenced by the presence of weaker and sequential alpha CH-NH NOEs, the absence of sequential NH-NH NOEs, and the lack of longer lived amides. Chemical shifts of resonances from backbone and side-chain protons of the C-terminal dodecapeptide, residues 400-411, differ significantly from those of the parent chain, suggesting that some preferred C-terminal conformation does exist.  相似文献   

9.
The hnRNP C1 and C2 proteins are abundant nuclear proteins that bind avidly to heterogeneous nuclear RNAs (hnRNAs) and appear to be involved with pre-mRNA processing. The RNA-binding activity of the hnRNP C proteins is contained in the amino-terminal 94 amino acid RNA-binding domain (RBD) that is identical for these two proteins. We have obtained the 1H, 13C, and 15N NMR assignments for the RBD of the human hnRNP C proteins. The assignment process was facilitated by extensive utilization of three- and four-dimensional heteronuclear-edited spectra. Sequential assignments of the backbone resonances were made using a combination of 15N-edited 3D NOESY-HMQC, 3D TOCSY-HMQC, and 3D TOCSY-NOESY-HSQC as well as 3D HNCA, HNCO, and HCACO spectra. Side-chain resonances were assigned using 3D HCCH-COSY and 3D HCH-TOCSY spectra. Four-dimensional 13C/13C-edited NOESY and 13C/15N-edited NOESY experiments were used to unambigously resolve NOEs. The overall global folding pattern was established by calculating a set of preliminary structures using constraints derived from the sequential NOEs and a small number of long-range NOEs. The beta alpha beta-beta alpha beta domain structure exhibits an antiparallel beta-sheet with the conserved RNP 1 and RNP 2 sequences [Dreyfuss et al. (1988) Trends Biochem. Sci. 13, 86-91] located adjacent to one another as the two inner strands of the beta-sheet.  相似文献   

10.
A two-dimensional NMR study has been carried out on the four-iron clusters of a bacterial oxidized ferredoxin for the purpose of investigating the relationship between contact shift patterns and the orientation of the individual coordinated cysteines. The ferredoxin from Clostridium pasteurianum, CpFdox, was selected because of its extensive sequence homology, and likely close structural similarity, to the crystallographically characterized ferredoxin from Peptococcus aerogenes, Pa Fdox (Adman, E.T., Sieker, L.C., and Jensen, L. H. (1973) J. Biol. Chem. 248, 3987-3996). Rapid data collection rates with minimal but adequate acquisition time allowed the detection of numerous CpFdox cross-peaks from the contact-shifted and strongly relaxed coordinated cysteinyl C beta H protons in the resolved 10-20 ppm window. Relatively strong magnitude COSY cross peaks from the resolved eight cysteinyl C beta H resonance unambiguously locate the geminal C beta H partner for each residue; weaker cross-peaks locate the C alpha Hs from three of the residues. The geminal nature of the magnitude-COSY detected partners to the resolved C beta H peaks is confirmed by strong NOESY cross-peaks. The NOESY spectra, moreover, assign an additional two cysteinyl C alpha H resonances. The present results confirm some previous one-dimensional NOE assignments, revise others, and locate resonances previously undetected (Bertini, I., Briganti, F., Luchinat, C., and Scozzafara, A. (1990) Inorg. Chem. 29, 1874-1880). A striking pairwise pseudo-symmetry in cysteinyl contact shift patterns is observed which is attributed to the previously recognized pseudo-symmetry in the crystal of PaFdox. A detailed analysis of the structural/electronic determinants of the coordinated cysteine C beta H contact shift pattern is made, and the NMR data necessary for unique interpretation are identified. It is shown that analysis of the relaxation properties of cysteine beta-methylene protons provides the stereospecific assignments necessary for comparison of shift ratios with crystallographic structural data. The available structural data on PaFdox (Backes, G., Mino, Y., Loehr, T., Meyer, T., Cusanovich, M., Sweeney, W., Adman, E., and Sanders-Loehr, J. (1991) J. Am. Chem. Soc. 13, 2055-2064) are qualitatively but not quantitatively consistent with the observed cysteinyl contact shift pattern, with the NMR data reflecting more asymmetry than previous studies. A tentative assignment of a single pair of symmetry-related cysteines is proposed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Conformations of dibucaine and tetracaine in small unilamellar phosphatidylcholine vesicles have been investigated by nuclear Overhauser effects (NOEs) in 1H nuclear magnetic resonance spectroscopy. Two-dimensional NOE and chemical exchange correlated spectroscopy (NOESY) and rotating frame NOE spectroscopy (ROESY) methods have been applied for obtaining the NOEs. In the NOESY spectra, NOEs between protons within the drug were overwhelmed by spin diffusion even at a short mixing time. This observation reduced the usefulness of the NOESY method on the one hand, however, on the other hand it facilitated remarkably in revealing signals due to the drug, hidden in the broad resonances of the membranes. In the ROESY spectra, the spin diffusion phenomena were less effective; accordingly the conformations of the drugs interacting with membranes were determined by the ROESY method. The observed NOE data showed that dibucaine takes more than two conformations and that both dibucaine and tetracaine are present as a dimer in the membranes. Molecular dynamics calculations supported these findings.  相似文献   

12.
J Feigon  W Leupin  W A Denny  D R Kearns 《Biochemistry》1983,22(25):5943-5951
In this study two-dimensional NMR techniques (COSY and NOESY) have been used in conjunction with one-dimensional NMR results to complete the assignment of the proton NMR spectrum of the double-stranded DNA decamer, d(ATATCGATAT)2, and to obtain qualitative information about numerous interproton distances in this molecule and some limited information about conformational dynamics. COSY and NOESY measurements have been combined to systematically assign many of the resonances from the H1' and H2',2" sugar protons to specific nucleotides in the double helix. This method relies on the fact that sugar protons within a specific nucleotide are scalar coupled and that base protons (AH8, GH8, TH6, and CH6) in right-handed helices can interact simultaneously with their own H2',2" sugar protons and those of the adjacent (5'-3') nucleotide attached to its 5' side (i.e., XpA not ApX). A COSY experiment is used to identify sugar resonances within a residue whereas the NOESY experiment allows the neighboring sugar to be connected (linked). The CH5 and CH6 resonances in the spectrum can immediately be identified by the COSY experiment. The methyl protons of thymine residues exhibit strong through-space interbase interactions both with their own TH6 proton and with AH8 proton on the adjacent (5'-3') adenine residue. These interactions are used both to make assignments of the spectra and to establish that the thymine methyl groups are in close proximity to the AH8 protons of adjacent adenine residues [Feigon, J., Wright, J. M., Leupin, W., Denny, W. A., & Kearns, D. R. (1982) J. Am. Chem. Soc. 104, 5540].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
B H Oh  E S Mooberry  J L Markley 《Biochemistry》1990,29(16):4004-4011
Multinuclear two-dimensional NMR techniques were used to assign nearly all diamagnetic 13C and 15N resonances of the plant-type 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120. Since a 13C spin system directed strategy had been used to identify the 1H spin systems [Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085], the sequence-specific 1H assignments [Oh, B.-H., & Markley, J. L. (1990) Biochemistry (first paper of three in this issue)] also provided sequence-specific 13C assignments. Several resonances from 1H-13C groups were assigned independently of the 1H assignments by considering the distances between these nuclei and the paramagnetic 2Fe.2S* center. A 13C-15N correlation data set was used to assign additional carbonyl carbons and to analyze overlapping regions of the 13C-13C correlation spectrum. Sequence-specific assignments of backbone and side-chain nitrogens were based on 1H-15N and 13C-15N correlations obtained from various two-dimensional NMR experiments.  相似文献   

14.
The hydration in the minor groove of double stranded DNA fragments containing the sequences 5'-dTTAAT, 5'-dTTAAC, 5'-dTTAAA and 5'-dTTAAG was investigated by studying the decanucleotide duplex d(GCATTAATGC)2 and the singly cross-linked decameric duplexes 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3' and 5'-d(GCCTTAAAGC)-3'-linker-5'-d(GCTTTAAGGC)-3' by NMR spectroscopy. The linker employed consisted of six ethyleneglycol units. The hydration water was detected by NOEs between water and DNA protons in NOESY and ROESY spectra. NOE-NOESY and ROE-NOESY experiments were used to filter out intense exchange cross-peaks and to observe water-DNA NOEs with sugar 1' protons. Positive NOESY cross-peaks corresponding to residence times longer than approximately 0.5 ns were observed for 2H resonances of the central adenine residues in the duplex containing the sequences 5'-dTTAAT and 5'-dTTAAC, but not in the duplex containing the sequences 5'-dTTAAA and 5'-dTTAAG. In all nucleotide sequences studied here, the hydration water in the minor groove is significantly more mobile at both ends of the AT-rich inner segments, as indicated by very weak or negative water-A 2H NOESY cross-peaks. No positive NOESY cross-peaks were detected with the G 1'H and C 1'H resonances, indicating that the minor groove hydration water near GC base pairs is kinetically less restrained than for AT-rich DNA segments. Kinetically stabilized minor groove hydration water was manifested by positive NOESY cross-peaks with both A 2H and 1'H signals of the 5'-dTTAA segment in d(GCATTAATGC)2. More rigid hydration water was detected near T4 in d(GCATTAATGC)2 as compared with 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3', although the sequences differ only in a single base pair. This illustrates the high sensitivity of water-DNA NOEs towards small conformational differences.  相似文献   

15.
G C King  J E Coleman 《Biochemistry》1987,26(10):2929-2937
The interaction of gene 5 protein (G5P) with oligodeoxynucleotides is investigated by 1H NMR methods, principally two-dimensional nuclear Overhauser effect spectroscopy (NOESY). Aromatic resonances of G5P are specifically assigned from crystallographic data, while the low-field resonances of nucleotides are assigned with sequential or other procedures. Chemical shift changes that accompany binding of d(pA)4, d(A)4, d(pT)4, and d(pA)8, combined with specific protein-nucleotide nuclear Overhauser effects (NOEs) obtained from NOESY spectra, suggest that Phe-73 and Tyr-26 are the only aromatic residues that stack significantly with nucleotide bases. Chemical shift data also imply a role for Leu-28, though this has not been confirmed with intermolecular NOEs. Binding of all four oligonucleotides causes marked upfield movements (0.1-0.6 ppm) of G5P NOESY cross peaks belonging to Tyr-26, Leu-28, and Phe-73. Most other G5P spin systems, notably those of Tyr-34 and Tyr-41, do not appear to be significantly affected. In the d(pA)4-G5P complex an intermolecular NOE is observed between Tyr-26 and H1' of Ade-1, while Phe-73 has NOEs with the H2, H8, and H1' protons of Ade-2 and -3. Intramolecular NOEs seem to follow a similar pattern in the partially cooperative d(pA)8-G5P complex, though specific nucleotide resonance assignments are not possible in this case. Binding causes relatively small chemical shift changes for the base resonances in adenylyl nucleotides, suggesting that there is some, but not complete, unstacking of the bases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Assignment of hyperfine-shifted resonances in paramagnetic metalloproteins such as Fe2S2 ferredoxins poses a major experimental challenge due to hyperfine shifts and/or severe line broadening. We have explored the possibility of using structural data from homologous proteins as part of an assignment strategy for the sequence-specific assignment of hyperfine-shifted backbone carbonyl (13C') and nitrogen resonances (15N) in Fe2S2 ferredoxins. This strategy is based on the assignment of resonances in the paramagnetic region to particular types of amino acid residues using selective isotope labeling. Reduced metal-nuclear distances are then calculated from experimentally determined T1 relaxation times for those resonances and the calculated distances aligned with the distances of nuclei at corresponding amino acid sequence positions in the crystal structure of a structurally homologous protein. The comparative assignment approach has met with success in correctly predicting the 13C' and 15N assignments in Pdx degrees from the crystal structure data of two similar and related ferredoxins, namely bovine adrenodoxin and Anabaena ferredoxin. Sequence-specific assignments made in this fashion were verified by selective 13C'{15N} decoupling experiments.  相似文献   

17.
Active fragments of the heat-stable enterotoxin ST I of Escherichia coli were chemically synthesized with the sequence Cys-Cys-Glu-Leu-Cys-Cys-Asn-Pro-Ala-Cys-Thr-Gly-Cys-(Tyr) and studied by proton (1H NMR) and carbon-13 (13C NMR) nuclear magnetic resonance spectroscopy as a function of pH and temperature. All of the nonexchangeable protons in the 1H NMR spectrum were assigned. Although all amide protons were present at temperatures below 25 degrees C and and pH values below 6, some of the resonances are broad and could not be assigned. The temperature dependence of these broad resonances indicates a change in conformation that is localized in the N-terminus. Other amide protons disappear at higher temperatures owing to chemical exchange with the solvent. Sufficient resonance assignments can be made at high and low temperatures to permit structural conclusions to be made. The chemical shifts of the alpha-carbon protons indicate the presence of substantial structure, which was further defined with the observed pattern of nuclear Overhauser enhancements (NOEs), coupling constants, and exchange rates. The NMR data identify a turn from Ala-14 to Cys-18. A second likely turn is centered around the proline residue. An interresidue NOE between the alpha-carbon protons of Asn-12 and Gly-17 indicates that the molecule folds back on itself. The NMR information is sufficient to define the structure of the C-terminal region of ST I. Manual model building then indicated that one arrangement of the three disulfides is particularly compatible with the NMR data and van der Waals constraints. A model incorporating the disulfide arrangement proposed by Houghten and his co-workers [Houghten, R.A., Ostresh, J.M., & Klipstein, F.A. (1984) Eur. J. Biochem. 145, 157-162] and the NMR constraints was derived with the programs PROTO [Frayman, F. (1985) Ph.D. Thesis, Northwestern University] and NOEMOT [Lane, A.N., Lefévre, J.-F., & Jardetsky, O. (1986) Biochim. Biophys. Acta 867, 45-56].  相似文献   

18.
19.
The stereoselective deuterium labeling at the 5' methylene protons of the ribose ring recently developed by Kawashima et al. [1995, Tetrahedron Lett., 36, 6699–6700] enabled the assignment of pro-R and pro-S protons at the 5' position. The deuterium-labeled nucleotides, [(5'S)-2H]- and [(5'R)-2H]-diastereomers, in an approximate ratio of 2:1, were incorporated in the decamer 5'-d(GCATTAATGC)-3'. Thus, both pro-R and pro-S methylene proton signals without geminal coupling appeared in the NOESY and DQF-COSY spectra. Complete stereospecific assignments and simplified spin systems enabled the determination of 15 3J coupling constants between H4' and H5'/H5", and the unambiguous assignment of 135 NOESY cross peaks originating from H4'/H5'/H5" resonances.  相似文献   

20.
X Wang  Y Lu 《Biochemistry》1999,38(28):9146-9157
The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号