首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  To investigate the effect of media composition and agroindustrial residues on bovicin HC5 production by Streptococcus bovis HC5.
Methods and Results:  Batch cultures of S. bovis HC5 were grown in basal medium containing different carbon and nitrogen sources. The activity of cell-free and cell-associated bovicin HC5 was determined in culture supernatants and acidic extracts obtained from cell pellets, respectively. Streptococcus bovis HC5 produced bovicin using a variety of carbon and nitrogen sources. The highest specific activity was obtained in media containing 16 g l−1 of glucose, after 16 h of incubation. The peak in cell-free and cell-associated bovicin HC5 activity was detected when S. bovis HC5 cultures reached stationary phase. The bovicin HC5 specific activity and bacterial cell mass increased approximately 3-fold when yeast extract and trypticase (0·5 and 1·0 g l−1, respectively) were added together to the basal medium. Streptococcus bovis HC5 cultures produced bovicin HC5 in cheese whey and sugar cane juice and maximal volumetric productivity was obtained after 12 h of incubation.
Conclusions:  Streptococcus bovis HC5 is a versatile lactic acid bacterium that can utilize several carbon and nitrogen sources for bovicin HC5 production. This bacterium could be a useful model to study bacteriocin production in the rumen ecosystem.
Significance and Impact of the Study:  The use of agroindustrial residues as carbon sources could have an economical impact on bovicin HC5 production. To our knowledge, this is the first report to show the use of sugar cane juice for bacteriocin production by lactic acid bacteria.  相似文献   

2.
The bacteriocin, bovicin HC5, catalyzed potassium efflux from Streptococcus bovis JB1, and this activity was highly pH dependent. When the pH was near neutral, glucose-energized cells were not affected by bovicin HC5, but the intracellular steady-state concentration of potassium decreased at acidic pH values. The idea that pH was affecting bovicin HC5 binding was supported by the observation that acidic pH also enhanced the efflux of potassium from non-energized cells that had been loaded with potassium. The relationship between bovicin HC5 concentration and potassium depletion was a saturation function, but cooperativity plots indicated that the binding of one bovicin molecule to the cell membrane facilitated the binding of another.  相似文献   

3.
Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5), but S. bovis JB1 does not have antimicrobial activity. Preliminary experiments revealed an anomaly. When S. bovis JB1 cells were washed in stationary phase S. bovis HC5 cell-free culture supernatant, the S. bovis JB1 cells were subsequently able to inhibit hyper-ammonia producing ruminal bacteria (Clostridium sticklandii, Clostridium aminophilum and Peptostreptococcus anaerobius). Other non-bacteriocin producing S. bovis strains also had the ability to bind and transfer semi-purified bovicin HC5. Bovicin HC5 that was bound to S. bovis JB1 was much more resistant to Pronase E than cell-free bovicin HC5, but it could be inactivated if the incubation period was 24 h. Acidic NaCl treatment (100 mM, pH 2.0) liberates half of the bovicin HC5 from S. bovis HC5, but it did not prevent bovicin HC5 from binding to S. bovis JB1. Acidic NaCl liberated some bovicin HC5 from S. bovis JB1, but the decrease in activity was only 2-fold. Bovicin HC5 is a positively charged peptide, and the ability of S. bovis JB1 to bind bovicin HC5 could be inhibited by either calcium or magnesium (100 mM). Acidic NaCl-treated S. bovis JB1 cells were unable to accumulate potassium, but they were still able to bind bovicin HC5 and prevent potassium accumulation by untreated S. bovis JB1 cells. Based on these results, bovicin HC5 bound to S. bovis JB1 cells still acts as a pore-forming lantibiotic.  相似文献   

4.
AIMS: To use bovicin HC5 to inhibit predominant bacteria isolated from spoiled mango pulp. METHODS AND RESULTS: Bovicin HC5 and nisin were added to brain heart infusion (BHI) medium (40-160 AU ml(-1)) or mango pulp (100 AU ml(-1)) and the growth of Bacillus cereus and Bacillus thuringiensis was monitored. Cultures treated with bovicin HC5 or nisin showed longer lag phases and grew slower in BHI medium. Bovicin HC5 and nisin were bactericidal and showed higher activity in mango pulp at acidic pH values. To determine the effect on spore germination and D values, mango pulp containing bovicin HC5 was inoculated with 10(6) and 10(9) spores per ml(-1), respectively, from each strain tested. Bovicin HC5 reduced the outgrowth of spores from B. cereus and B. thuringiensis, but thermal sensitivity was not affected. CONCLUSIONS: Bovicin HC5 was bactericidal against B. cereus and B. thuringiensis isolated from spoiled mango pulp. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacillus cereus and B. thuringiensis had not been previously isolated from spoiled mango pulp and bovicin HC5 has the potential to inhibit such bacteria in fruit pulps.  相似文献   

5.
Some Gram-positive bacteria produce small peptides (bacteriocins) that have antimicrobial activity, but many bacteria can become bacteriocin resistant. Bovicin HC5, a lantibiotic produced by Streptococcus bovis HC5, has the ability to inhibit nisin-resistant bacteria. Because nisin resistance has in many cases been correlated with an alteration of lipoteichoic acids or the polar head groups of membrane phospholipids, we decided to examine the effect of divalent cations on nisin and bovicin HC5 activity. Both bacteriocins catalyzed potassium efflux from S. bovis JB1, a non–bacteriocin-producing strain. The addition of large amounts (100 mM) of calcium or magnesium increased the ability of S. bovis JB1 to bind Congo red (an anionic dye) and counteracted bacteriocin-mediated potassium loss. Calcium was more effective than magnesium in decreasing nisin activity, but the reverse was observed with bovicin HC5. Nisin-resistant S. bovis JB1 cells bound three times as much Congo red as nisin-sensitive cells, and this result is consistent with the idea that changes in cell surface charge can be a mechanism of bacteriocin resistance. The nisin-resistant cells were less susceptible to bovicin HC5, but bovicin HC5 still caused a 50% depletion of intracellular potassium. These results indicate that nisin and bovicin HC5 react differently with the cell surfaces of Gram-positive bacteria. Proprietary or names are necessary to report factually on available data; however, the United States Department of Agriculture (USDA) neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

6.
Aims:  To test the effect of bovicin HC5 against vegetative cells and endospores of Alicyclobacillus acidoterrestris DSMZ 2498 in synthetic media and in acidic mango pulp.
Methods and Results:  Alicyclobacillus acidoterrestris was grown in synthetic medium at 40°C and pH 4·0. The effect on vegetative cells was assayed by adding bovicin HC5 to synthetic medium (40–160 AU ml−1) or to mango pulp (100 AU ml−1) at various pH values and determining the effect on growth (OD600nm) and viable cell number, respectively. The effect of bovicin HC5 on spore germination and thermal sensitivity of A. acidoterrestris was tested in mango pulp (pH 4·0) containing 80 AU ml−1 of bovicin HC5. Bovicin HC5 was bactericidal against vegetative cells of A. acidoterrestris at different pH values and showed sporicidal activity against endospores of this bacterium. When spores of A. acidoterrestris were heat treated in the presence of bovicin HC5, D -values decreased 77% to 95% compared to untreated controls at temperatures ranging from 80 to 95°C.
Conclusion:  Bovicin HC5 was bactericidal and sporicidal against A. acidoterrestrsi DSMZ 2498.
Significance and Impact of the Study:  These results indicated that bovicin HC5 has potential to prevent spoilage of acidic fruit juices by thermocidophilic spore-forming bacteria.  相似文献   

7.
Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5) that inhibits pure cultures of hyper ammonia-producing bacteria (HAB). Experiments were preformed to see if: (1) S. bovis HC5 cells could inhibit the deamination of amino acids by mixed ruminal bacteria taken directly from a cow, (2) semi-purified bovicin was as effective as S. bovis HC5 cells, and 3) semi-purified and the feed additive monensin were affecting the same types of ammonia-producing ruminal bacteria. Because purified and semi-purified bovicin HC5 was as effective as S. bovis HC5 cells, it appeared that bovicin HC5 was penetrating the cell membranes of HAB before it could be degraded by peptidases and proteinases. Mixed ruminal bacteria that were successively transferred and enriched nine times with trypticase did not become significantly more resistant to either bovicin HC5 (50 AU mL−1) or monensin (5 μM), and amplified rDNA restriction analysis indicated that bovicin HC5 and monensin appeared to be selecting against the same types of bacteria.  相似文献   

8.
A bacteriocin-producing Streptococcus bovis strain (HC5) outcompeted a sensitive strain (JB1) before it reached stationary phase (pH 6.4), even though it grew 10% slower and cell-free bovicin HC5 could not yet be detected. The success of bacteriocin-negative S. bovis isolates was enhanced by the presence of another sensitive bacterium (Clostridium sticklandii SR). PCR based on repetitive DNA sequences indicated that S. bovis HC5 was not simply transferring bacteriocin genes to S. bovis JB1. When the two S. bovis strains were coinoculated into minimal medium, bacteriocin-negative isolates predominated, and this effect could be explained by the longer lag time (0.5 vs. 1.5 h) of S. bovis HC5. If the glucose concentration of the minimal medium was increased from 2 to 7 mg mL(-1), the effect of lag time was diminished and bacteriocin-producing isolates once again dominated the coculture. When the competition was examined in continuous culture, it became apparent that batch culture inocula were never able to displace a strain that had already reached steady state, even if the inoculum was large. This result indicated that bacterial selection for substrate affinity was even more important than bacteriocin production.  相似文献   

9.
Streptococcus bovis HC5 inhibits a variety of S. bovis strains and other Gram-positive bacteria, but factors affecting this activity had not been defined. Batch culture studies indicated that S. bovis HC5 did not inhibit S. bovis JB1 (a non-bacteriocin-producing strain) until glucose was depleted and cells were entering stationary phase, but slow-dilution-rate, continuous cultures (0.2 h(-1)) had as much antibacterial activity as stationary-phase batch cultures. Because the activity of continuous cultures (0.2-1.2 h(-1)) was inversely related to the glucose consumption rate, it appeared that the antibacterial activity was being catabolite repressed by glucose. When the pH of continuous cultures (0.2 h(-1)) was decreased from 6.7 to 5.4, antibacterial activity doubled, but this activity declined at pH values less than 5.0. Continuous cultures (0.2 h(-1)) that had only ammonia as a nitrogen source had antibacterial activity, and large amounts of Trypticase (10 mg ml(-1)) caused only a 2.0-fold decline in the amount of HC5 cell-associated protein that was needed to prevent S. bovis JB1 growth. Because S. bovis HC5 was able to produce antibacterial activity over a wide range of culture conditions, there is an increased likelihood that this activity could have commercial application.  相似文献   

10.
Probiotics and Antimicrobial Proteins - Bovicin HC5 is a peptide that has inhibitory activity against various pathogenic microorganisms and food spoilage bacteria. Aiming to improve the...  相似文献   

11.
Aims: To examine the prevalence of bacteriocin production in Streptococcus bovis isolates from Australian ruminants and the feasibility of industrial production of bacteriocin. Methods and Results: Streptococcus bovis strains were tested for production of bacteriocin‐like inhibitory substances (BLIS) by antagonism assay against Lactococcus lactis. BLIS production was associated with source animal location (i.e. proximity of other bacteriocin‐positive source animals) rather than ruminant species/breed or diet. One bacteriocin showing strong inhibitory activity (Sb15) was isolated and examined. Protein sequence, stability and activity spectrum of this bovicin were very similar to bovicin HC5. Production could be increased through serial culturing, and increased productivity could be partially maintained during cold storage of cultures. Conclusions: BLIS production is geographically widely distributed in Eastern Australia, and it appears that the bacteriocin+ trait is maintained in animals at the same location. The HC5‐like bacteriocin, originally identified in North America, is also found in Australia. Production of bacteriocin can be increased through serial culturing. Significance and Impact of the Study: The HC5‐like bacteriocins appear to have a broad global distribution. Serial culturing may provide a route towards commercial manufacturing for use in industrial applications, and purified bacteriocin from S. bovis Sb15 could potentially be used to prevent food spoilage or as a feed additive to promote growth in ruminant species.  相似文献   

12.
AIMS: To assess the inhibitory activity and the influence of culture condition on the growth and bacteriocin, Thermophilin 1277, production by Streptococcus thermophilus SBT1277. METHODS AND RESULTS: Thermophilin 1277, which was produced by S. thermophilus SBT1277, showed an antimicrobial activity against several lactic acid bacteria and food spoilage bacteria including Clostridium butylicum, C. sprogenes and Bacillus cereus. Thermophilin 1277 was inactivated by proteinase K. Heating treatment did not affect the antimicrobial activity. The partially purified Thermophilin 1277 had an apparent molecular mass of 3.7 kDa. N-terminal sequence analysis revealed 15 amino acid residues that correspond with amino acid sequence of the lantibiotics bovicin HJ50 produced by Streptococcus bovis HJ50. The effects of culture condition for the bacteriocin production by S. thermophilus SBT1277 were studied. During the batch fermentation, Thermophilin 1277 was produced in M17 broth, but no bacteriocin production occurred in the sucrose-tryptone (ST) broth. Bacteriocin production was detected in pH controlled ST broth at pH values of 5.5-6.5. CONCLUSIONS: Thermophilin 1277 production from S. thermophilus strain depended on the culture conditions. Some characters and N-terminal amino acid sequence of Thermophilin 1277 differed from bacteriocins produced by S. thermophilus reported previously. SIGNIFICANCE AND IMPACT OF THE STUDY: Streptococcus thermophilus SBT1277 or its bacteriocin which has a wide inhibitory spectrum has a potential use as a biopreservative in dairy products.  相似文献   

13.
Streptococcus bovis HC5 inhibits a variety of S. bovis strains and other Gram-positive bacteria, but factors affecting this activity had not been defined. Batch culture studies indicated that S. bovis HC5 did not inhibit S. bovis JB1 (a non-bacteriocin-producing strain) until glucose was depleted and cells were entering stationary phase, but slow-dilution-rate, continuous cultures (0.2 h−1) had as much antibacterial activity as stationary-phase batch cultures. Because the activity of continuous cultures (0.2–1.2 h−1) was inversely related to the glucose consumption rate, it appeared that the antibacterial activity was being catabolite repressed by glucose. When the pH of continuous cultures (0.2 h−1) was decreased from 6.7 to 5.4, antibacterial activity doubled, but this activity declined at pH values less than 5.0. Continuous cultures (0.2 h−1) that had only ammonia as a nitrogen source had antibacterial activity, and large amounts of Trypticase (10 mg ml−1) caused only a 2.0-fold decline in the amount of HC5 cell-associated protein that was needed to prevent S. bovis JB1 growth. Because S. bovis HC5 was able to produce antibacterial activity over a wide range of culture conditions, there is an increased likelihood that this activity could have commercial application. Received: 6 February 2002 / Accepted: 27 March 2002  相似文献   

14.
AIMS: The aim of this research was to investigate the production of bacteriocins by Bacillus spp. isolated from native soils of south of Brazil. METHODS AND RESULTS: A bacteriocin produced by the bacterium Bacillus cereus 8 A was identified. The antimicrobial activity was produced starting at the exponential growth phase, although maximum activity was at stationary growth phase. A crude bacteriocin obtained from culture supernatant fluid was inhibitory to a broad range of indicator strains, including Listeria monocytogenes, Clostridium perfringens, and several species of Bacillus. Clinically relevant bacteria such as Streptococcus bovis and Micrococcus luteus were also inhibited. Bacteriocin was stable at 80 degrees C, but the activity was lost when the temperature reached 87 degrees C. It was resistant to the proteolytic action of trypsin and papain, but sensitive to proteinase K and pronase E.Bacteriocin activity was observed in the pH range of 6.0-9.0. CONCLUSIONS: A bacteriocin produced by Bacillus cereus 8 A was characterized, presenting a broad spectrum of activity and potential for use as biopreservative in food. SIGNIFICANCE AND IMPACT OF STUDY: The identification of a bacteriocin with large activity spectrum, including pathogens and spoilage microorganisms, addresses an important aspect of food safety.  相似文献   

15.
Antimicrobial peptides have been suggested as an alternative to classical antibiotics in livestock production and bacteriocin-producing bacteria could be added to animal feeds to deliver bacteriocins in the gastrointestinal (GI) tract of ruminant and monogastric animals. In this study, viable (V) and heat-killed (HK) Streptococcus bovis HC5 cells were orally administered to pre-sensitized mice in order to assess the effects of a bacteriocin-producing bacteria on histological parameters and the immune response of the GI tract of monogastric animals. The administration of V and HK S. bovis HC5 cells during 58 days to BALB/c mice did not affect weight gain, but an increase in gut permeability was detected in animals receiving the HK cells. Viable and heat killed cells caused similar morphological alterations in the GI tract of the animals, but the most prominent effects were detected in the small intestine. The oral administration of S. bovis HC5 also influenced cytokine production in the small intestine, and the immune-mediated activity differed between V and HK cells. The relative expression of IL-12 and INF-γ was significantly higher in the small intestine of mice treated with V cells, while an increase in IL-5, IL-13 and TNF-α expression was only detected in mice treated with HK cells. Considering that even under a condition of severe challenge (pre-sensitization followed by daily exposure to the same bacterial immunogen) the general health of the animals was maintained, it appears that oral administration of S. bovis HC5 cells could be a useful route to deliver bacteriocin in the GI tract of livestock animals.  相似文献   

16.
The effects of various parameters on production and activity of mesenterocin 5, a bacteriocin produced by Leuconostoc mesenteroides subsp. mesenteroides UL5, were investigated. Titres of bacteriocin and minimum inhibitory concentration values were determined by a critical dilution micromethod, using a sensitive strain of Listeria ivanovii as an indicator. Production of the antimicrobial compound was optimal at 37 and 40°C after 9 h of incubation, and was maximized in an aerobic fermentor maintained at pH 5.0. Tween 80 was a major factor in increasing mesenteroxin 5 production and specific production. Large quantities of bacteriocin could be obtained in whey and in whey permeate supplemented with yeast extract in the presence of the surfactant (0.1%). Most of the Listeria strains tested including L. monocytogenes were highly sensitive to the bacteriocin in the pH range 5.5 to 6.0 and at a temperature of 20 to 25°C.  相似文献   

17.
Bacteriocins are ribosomally synthesized peptides having considerable potential as a food preservative because of their strong antagonistic activity against many food spoilage and pathogenic organisms. A bacteriocin from Lactobacillus rhamnosus isolates was purified using ammonium sulphate precipitation and molecular exclusion chromatography techniques. Ammonium sulphate precipitation resulted in higher yield of bacteriocin, but the specific activity and fold purification were higher for molecular exclusion chromatography. The bacteriocin exhibited inhibition against food-borne pathogens and spoilage microorganisms, including both Gram-positive and -negative bacteria. Amylase, lipase and catalase did not alter the antimicrobial activity but proteolytic enzymes inactivated the bacteriocin. It was heat stable and exhibited activity in a pH range of 2–8 with maximum activity at pH 5.0. Molecular weight of bacteriocin was found to be ~5.6 kDa using SDS-PAGE. HPLC profile showed a single peak further attesting the purity of the bacteriocin.  相似文献   

18.
Lantibiotic bovicin HJ50 is produced by Streptococcus bovis HJ50 and acts as the extracellular signal to autoregulate its own biosynthesis through BovK/R two-component system. Bovicin HJ50 shows a linear N-terminal and glubolar C-terminal structure, and the sensor histidine kinase BovK contains eight transmembrane segments lacking any extensive surface-exposed sensory domain. The signal recognition mechanism between bovicin HJ50 and BovK is still unknown. We performed saturated alanine scanning mutagenesis and other amino acid substitutions on bovicin HJ50 using a semi-in vitro biosynthesis. Results of the mutants inducing activities indicated that several charged and hydrophobic amino acids in ring B of bovicin HJ50, as well as two glycines were key residues to recognize BovK. Circular dichroism analyses indicated that both glycines contributed to bovicin HJ50 structural changes in the membrane. Biotin-labeled bovicin HJ50 could interact with the N-terminal sensor of BovK, and several charged residues and a conserved hydrophobic region in the N-terminal portion of BovK sensor domain were important for interacting with the signal bovicin HJ50. By combining the results, we suggested a mechanism of bovicin HJ50 recognizing and activating BovK mainly through electrostatic and hydrophobic interactions.  相似文献   

19.
Lactococcus lactis subsp. lactis A164 was isolated from Kimchi (Korean traditional fermented vegetables). The bacteriocin produced by strain A164 was active against closely related lactic acid bacteria and some food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Salmonella typhimurium. The antimicrobial spectrum was nearly identical to that of nisin. Bacteriocin activity was not destroyed by exposure to elevated temperatures at low pH values, but the activity was lost at high pH values. This bacteriocin was inactivated by pronase E and alpha, beta-chymotrypsin, but not by trypsin, pepsin, and alpha-amylase. Cultures of L. lactis subsp. lactis A164 maintained at a constant pH of 6.0 exhibited maximum production of the bacteriocin. It was purified to homogeneity by ammonium sulphate precipitation, sequential ion exchange chromatography, and ultrafiltration. Tricine-SDS-PAGE of purified bacteriocin gave the same molecular weight of 3.5 kDa as that of nisin. The gene encoding this bacteriocin was amplified by PCR with nisin gene-specific primers and sequenced. It showed identical sequences to the nisin gene. These results indicate that bacteriocin produced by Lactococcus lactis A164 is a nisin-like bacteriocin.  相似文献   

20.
The amount of lactocin S activity in a growing culture depends on the growth stage of the bacteria, the pH of the medium, the presence of ethanol, and the aeration of the culture. We observed the highest levels of bacteriocin activity in the early stationary growth phase of cultures at 30 deg C. When Lactobacillus sake L45 was grown in a fermentor at pH 5, it produced 2,000 to 3,000 bacteriocin units per ml, which represented an 8- to 10-fold increase in bacteriocin production compared with production during batch culture fermentation. Less than 10% of this level of bacteriocin activity was observed during fermentation at pH 6.0. When 1% ethanol was included in the growth medium, a two- to fourfold increase in the bacteriocin yield was observed. Aerating the culture during growth almost completely eliminated the production of active bacteriocin. Our results also showed that lactocin S-mediated killing of target cells depended on the pH of the culture. The pH had to be less than 6 in order to obtain a bactericidal effect with lactocin S-sensitive cells. At pH values greater than 6, lactocin S had no apparent effect on sensitive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号