首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous work we demonstrated that gp20, a sialoglycoprotein of human sperm is homologous to the leukocyte antigen CD52 and that anti-gp20 recognizes an antigen of the same molecular weight as that recognized by CAMPATH-1 (anti CD52) in leukocytes and sperm, but with some differences. In this study we used anti-gp20 to perform immunoblot analysis of many different sperm, seminal plasma and leukocyte samples. The sperm and seminal plasma antigens were similar and appeared to consist of two components, whereas the leukocyte antigen is unique. Evidence of the presence of two components of the sperm antigen, running respectively at about 19 and 21 kDa, was obtained by analyzing the purified antigen stained with Coomassie brilliant blue and by immunoblot analysis of the antigen after two-dimensional electrophoresis. Both components had an isoelectric point (pI) between 3 and 6. MALDI analysis of the purified antigen confirmed the presence of two components and indicated masses (Mr) of 8243 and 10908. The possible relationship between these findings and the presence of two forms of the CD52 gene differing at two aminoacids C-terminal to the GPI-anchor site has been discussed.  相似文献   

2.
gp20 is a sialoglycoprotein of the human sperm surface with a core peptide homologous to the leukocyte antigen CD52, a GPI-anchored glycosylated protein which is described by the monoclonal antibody CAMPATH-1. Comparative analyses, by means of CAMPATH and anti-gp20, indicated that they describe it in morphologically and functionally different ways, suggesting that the respective epitopes are different but also casting doubt on the immunological identity of the antigen. In the present study, we used immunodepletion to demonstrate that CAMPATH and anti-gp20 interact with the same antigen, but that anti-gp20 has a much higher avidity for the antigen than CAMPATH. Anion exchange fractionation analysis of the antigen revealed three differently charged gp20-CD52 forms, the least charged of which, was largely without a GPI-anchor. All three forms were associated with freshly ejaculated sperm, whereas capacitated sperm only contained the two GPI-anchored, more charged forms, which were also the ones found in the prostasome fraction of seminal plasma and in leukocytes. The two charged, GPI-anchored forms were described as homogeneous by anti-gp20, since they ran as a singlet; the third form ran as a doublet. When tested for insertion into Jurkat T cells, the medium charged form inserted the most readily and the less charged one could not be inserted at all.  相似文献   

3.
CD52 is a human glycosylphosphatidylinositol (GPI)-anchored antigen exclusively expressed in leukocytes and epididymal cells. It is also present in sperm, being inserted in their plasma membrane as they pass through the epididymis. In a previous paper we identified a new CD52 form without GPI anchor by fast performance liquid chromatography (FPLC) fractionation of semen components. The form has a lower negative charge than the GPI-anchored form and occurs as the only CD52 form in prostasome-free seminal plasma. It was also found associated with the ejaculated sperm, but in contrast to the GPI-anchored one, it is lost during the capacitation process. In this paper we indicate that (1) the GPI-anchored CD52 of the sperm surface serves as receptor for semenogelin I during clot formation, (2) liquefaction involves cleavage of the GPI anchor from certain CD52 molecules, releasing sperm from the clot and the soluble antigen bound to semenogelin fragments into the seminal plasma and (3) the clot is a sponge-like structure housing sperm. Soluble CD52 was immunopurified from the soluble CD52-containing FPLC fraction using CAMPATH-1G and was found to be complexed with a semenogelin-derived peptide of the carboxyl terminal portion of semenogelin I, having the sequence SQTEKLVAGKQI and starting from amino acid 376. Immunoprecipitation and immunoblot analyses using CAMPATH-1G and anti-semenogelin as immunoprecipitating antibodies and anti-gp20 and anti-semenogelin as immunoblot detectors of the corresponding antigens, confirmed that the soluble CD52 formed a complex with semenogelin. The semenogelin-CD52 soluble form was found to be a direct consequence of the liquefaction process since only the GPI-anchored CD52 was recovered in uniquefied semen after recovering sperm and seminal plasma by urea solubilization of the clot.  相似文献   

4.
The bovine maturation-associated sperm membrane antigen CD52-like molecule has been analysed using a mouse anti-sperm monoclonal antibody developed against bull spermatozoa. The antigen recognised by monoclonal antibody IVA-543 was detected on blood mononuclear cells (including lymphocytes and monocytes) and on a minor population of polymorphonuclear leukocytes. The bovine CD52-like molecule is secreted by the epididymal epithelium and then it is inserted into the sperm membrane during the epididymal transport in the distal part of epididymis. The CD52-like molecule was absent from spermatozoa derived from testes, and the highest proportion of IVA-543-reactive sperm was observed in the cauda epididymis (91.6%).This study has shown that the new molecule identified on bovine cells has properties analogous to those previously described for CD52 molecules in man, mouse, rat, monkey, and dog.  相似文献   

5.
A monoclonal antibody (CAMPATH-1G) against the human lymphocyte surface protein CD52, which is similar to the epididymal secretion HE5, was used to ascertain the presence of this protein on maturing primate spermatozoa by flow cytometry. The percentage of human viable spermatozoa stained specifically with this antibody increased from sperm in spermatocoeles (0.5%), to the efferent ducts (3.8%), corpus (47.2%), and cauda (85.7%) epididymidis. Positive cells revealed staining mainly over the whole tail and postacrosomal region of the sperm head. Spermatozoa (∼10%) from both the efferent ducts and corpus epididymidis took up additional antigen when incubated with human distal cauda epididymidal plasma as a source of CD52, and 12–22% of human testicular sperm (from spermatocoeles) took up CD52 from human seminal plasma. In the cynomolgus monkey, nonspecific binding of control IgG was greater than that in human males and net CD52 staining was measurable only on ∼30% of corpus sperm where it was mainly on the principal piece. Neither caput nor cauda sperm took up human CD52 upon incubation with human seminal plasma, but an additional 27% of corpus sperm expressed CD52. Such uptake of CD52 was drastically reduced, or did not occur, when seminal plasma had been fractionated by filtration through 0.1 μm filters (filtrate II) or 300,000 Da cutoff filters (filtrate III), respectively. Western blots revealed that CD52 contents were much reduced in filtrate II and nondetectable in filtrate III of seminal plasma. Similar reduction of CD52 in the filtrate of cauda epididymidal plasma indicates the association of this epididymal secretion with large molecular factors and suggests their involvement as carriers in the in vivo transfer of the secretion onto the epididymal sperm surface. The in vitro uptake of CD52 by some but not all immature sperm and the detection by Western blotting of much less CD52 in the corpus than the cauda luminal plasma suggest that the acquisition of this epididymal secretion by spermatozoa depends on their maturation status as well as the availability of the protein in the epididymal lumen. Mol. Reprod. Dev. 48:267–275, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Sperm agglutination antigen-1 (SAGA-1) is a human male reproductive tract glycoform of CD52. Unique modification of CD52 N-linked oligosaccharide chains in the epididymis and vas deferens results in the appearance of a carbohydrate epitope that is localized over the entire surface of human spermatozoa. SAGA-1 was characterized by the sperm-inhibitory murine monoclonal antibody (mAb) S19, and it is the target antigen of a human mAb (H6-3C4) associated with antibody-mediated infertility. Collectively, sperm surface localization, antibody inhibition of sperm function, and potential reproductive-tissue specificity identify SAGA-1 as an attractive candidate contraceptive immunogen. To establish an animal model for the study of SAGA-1 in immunologic infertility and immunocontraceptive development, we investigated the appearance of the S19 carbohydrate epitope in nonhuman primates. The S19 mAb demonstrated little to no immunoreactivity by Western blot analysis with protein extracts of spermatozoa from the baboon, marmoset, bonnet, cynomolgus, and pigtailed macaques. Immunohistochemical analysis identified CD52 in the bonnet monkey epididymis; however, the N-linked carbohydrate moiety recognized by the S19 mAb, and unique to SAGA-1, was absent. In contrast, the S19 carbohydrate epitope was identified in chimpanzee sperm extracts by Western blot analysis and in chimpanzee epididymal tissue sections by immunohistochemical analysis, indicating that it is conserved in this close relative of the human. Chimpanzee testis, seminal vesicle, and prostate do not express the S19 epitope. Although anti-CD52 immunoreactivity was identified in the spleen, the carbohydrate moiety recognized by the S19 mAb was absent, corroborating data in the human that demonstrated tissue-specific glycosylation of sperm CD52. Immunofluorescent analysis indicated that the chimpanzee homologue of sperm CD52 was present over the entire spermatozoon. In addition, the S19 mAb agglutinated chimpanzee spermatozoa in a manner similar to the effect observed on human spermatozoa. These data indicate that the distinctive carbohydrate moiety of human sperm CD52 is present in the chimpanzee, and they identify the chimpanzee as the most appropriate primate model to study the potential of this unique CD52 glycoform as a contraceptive immunogen.  相似文献   

7.
A major epididymal secretory protein in men has a colinear cDNA sequence with lymphocyte CD52, a sialylated glycoprotein. Immunostaining and flow cytometric detection of cynomolgus monkey sperm CD52 during epididymal maturation showed increases from 20 to 85% stained sperm from the caput to the corpus with staining intensities doubled. Freshly prepared cauda sperm showed only 10% staining while they markedly increased in percentage and intensity of staining upon incubation at 37 degrees C under capacitating conditions, but not at 4 degrees C. Western blotting of proteins from fresh cauda sperm revealed no less antigen than corpus sperm. Staining of ejaculated sperm exhibited similar increases during incubation. Further washing with a high salt medium before staining to remove any electrostatically-bound molecules masking the antigen showed no effect. Incubation-induced increases in antigen binding were accelerated by the addition of neuraminidase (0.25 and 0.5 U/ml), but not affected by the sialyl residue-rich fetuin (5 mg/ml) competing for any endogenous neuraminidase. There were no concomitant decreases in the staining of sialic acid residues during capacitation-incubation. These findings suggest a cryptic antigen epitope site as a consequence of sperm maturation and subsequent re-exposure under capacitation conditions, but not due to the removal of sialic acid residues by endogenous neuraminidase. Involvement of endogenous proteases was also ruled out, as incubation in the presence of protease inhibitors did not hinder the increases but resulted in a dose-dependent enhancement in staining, suggesting some protease-sensitive unmasking process. In conclusion, the monkey epididymal secreted CD52 on sperm underwent changes in antigenic characteristics during sperm maturation which were reversed under capacitation conditions.  相似文献   

8.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Identification of membrane antigens of goat epididymal spermatozoa   总被引:1,自引:0,他引:1  
Purified goat sperm plasma membrane was used as antigen to raise the antibody in rabbit. Using this antisera four groups of antigenic membrane polypeptides are determined in caput and cauda epididymal sperm. The immunoresponsiveness of the polypeptides in caput and cauda sperm differs significantly. In case of cauda epididymal sperm, the polypeptides of region A (96KDa, 82KDa, 78KDa, 68KDa) and region D (24KDa, 20KDa, 18KDa) are highly immunoresponsive whereas in case of caput epididymal sperm the same antisera recognized the polypeptides of region B, C and D. By surface labelling with lactoperoxidase iodination and subsequent immunoprecipitation in the iodinated cell extract we demonstrate eight of these above polypeptides (96KDa, 82KDa, 68KDa, 50KDa, 29KDa, 24KDa, 20KDa and 18KDa) as surface antigen. The 96KDa, 82KDa and 68KDa surface polypeptides are highly immunoresponsive than the other lower molecular weight surface antigens in cauda epididymal goat spermatozoa.  相似文献   

10.
In a benchmark study, Isojima and colleagues established H6-3C4, the first successful heterohybridoma immortalized from the peripheral blood lymphocytes of an infertile woman who exhibited high sperm-immobilizing antibody titers. The present report demonstrates the identity between the glycoprotein antigens recognized by the human H6-3C4 monoclonal antibody (mAb) and the murine S19 mAb, generated in our laboratory to sperm agglutination antigen-1 (SAGA-1). Both mAb's recognize N-linked carbohydrate epitopes on the 15-25 kDa, polymorphic SAGA-1 glycoprotein that is localized to all domains of the human sperm surface. Treatment with phosphatidylinositol-specific phospholipase C demonstrated that SAGA-1 is anchored in the sperm plasmalemma via a GPI-lipid linkage. Immunoaffinity purification and microsequencing indicated that the core peptide of the SAGA-1 glycoprotein is identical to the sequence of CD52, a GPI-anchored lymphocyte differentiation marker implicated in signal transduction. Comparison of anti-SAGA-1 and anti-CD52 immunoreactivities revealed that the sperm form of CD52 exhibits N-linked glycan epitopes, including the epitope recognized by the infertility-associated H6-3C4 mAb, which are not detected on lymphocyte CD52. Thus, the two populations of the CD52 glycoprotein on lymphocytes and spermatozoa represent glycoforms, glycoprotein isoforms with the same core amino acid sequence but different carbohydrate structures. Furthermore, mAb's to the unique carbohydrate epitopes on sperm CD52 have multiple inhibitory effects on sperm function, including a cytotoxic effect on spermatozoa in the presence of complement. These results are the first to implicate unique carbohydrate moieties of a sperm CD52 glycoform as target epitopes in the anti-sperm immune response of an infertile woman. Furthermore, localization of CD52 on all domains of the sperm surface coupled with the multiple sperm-inhibitory effects of antibodies to its unique carbohydrate moieties suggest opportunities for immunocontraceptive development.  相似文献   

11.
Development of the sperm's capacity to interact with the zona pellucida was investigated at the stage when the acrosome reaction (AR) is induced. The response of epididymal sperm to agents that affect the occurrence of the AR was used to monitor maturational changes. Despite the finding that sperm from the three main epididymal regions were competent to undergo ARs induced by the divalent cation ionophore A23187 (56% AR, 74% AR, and 83% AR in caput, corpus, and cauda, respectively), the cells' responses to solubilized zonae pellucidae were different. When challenged with 5 zonae equivalents/microliter, both corpus and cauda sperm shed their acrosomes in high numbers (75% AR and 86% AR, respectively), whereas caput sperm did not (23% AR). Previous work has shown that the presence of M42 monoclonal antibody (mAb) during in vitro and in vivo fertilization inhibits sperm penetration through the zona pellucida by specific interference with zonae pellucidae-induced ARs. In this study, presence of the M42 mAb did not affect the incidence of A23187-induced ARs, whereas the zona-induced ARs that occurred in both corpus and cauda sperm were inhibited fully with M42 immunoglobulin (Ig) G. In addition, the antigen recognized by M42 mAb on sperm, termed M42 Ag, was examined during epididymal maturation. Although antigen localization appeared indistinguishable by immunofluorescence on sperm taken from the caput, corpus, and cauda regions of the epididymis, modification of this antigen during epididymal transit was detected. Equilibrium-binding studies using 125I-M42 IgG demonstrated a progressive increase during epididymal transit in the amount of M42 mAb that bound to fixed cells. Corpus and cauda sperm bound 185% and 240%, respectively, of the 125I-M42 IgG detected on caput sperm. These changes in expression of M42 Ag paralleled a structural change: the Mr of the antigen decreased from a 195,000/210,000 doublet in caput sperm to a 185,000/200,000 doublet in corpus and cauda sperm, as determined by immunoblot analysis of sodium dodecyl sulfate (SDS)-extracted sperm. Results presented here demonstrate that mouse sperm develop the capacity to undergo a zona-induced AR during epididymal maturation. The M42 antigen, which is involved in the zona-induced AR, is modified during epididymal transit coincident with development of the sperm's responsiveness to zonae. Our working hypothesis, based on these results, is that development of the sperm's capacity to undergo a physiological AR is related to modification of M42 Ag.  相似文献   

12.
Summary In a survey of sperm antigens in the rat, a new intra-acrosomal antigen was found using a monoclonal antibody MC41 raised against rat epididymal spermatozoa. The MC41 was immunoglobulin G1 and recognized spermatozoa from rat, mouse and hamster. Indirect immunofluorescence with MC41 specifically stained the crescent region of the anterior acrosome of the sperm head. Immuno-gold electron microscopy demonstrated that the antigen was localized within the acrosomal matrix. Immunoblot study showed that MC41 recognized a band of approximately 165000 dalton in the extract of rat sperm from the cauda epididymidis. Immunohistochemistry with MC41 demonstrated that the antigen was first detected in approximately step-2 spermatids, and distributed over the entire cytoplasmic region of spermatids from step 2 to early step 19. The head region became strongly stained in late step-19 spermatids and then in mature spermatozoa. Distinct immunostaining was not found in the developing acrosome of spermatids throughout spermiogenesis. These results suggest that the MC41 antigen is a unique intra-acrosomal antigen which is accumulated into the acrosome during the terminal step of spermiogenesis.  相似文献   

13.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

14.
Cellular prion protein (Prp(C)) is a glycoprotein usually associated with membranes via its glycosylphosphatidylinositol (GPI) anchor. The trans-conformational form of this protein (Prp(SC)) is the suggested agent responsible for transmissible neurodegenerative spongiform encephalopathies. This protein has been shown on sperm and in the reproductive fluids of males. Antibodies directed against the C-terminal sequence near the GPI-anchor site, an N-terminal sequence, and against the whole protein showed that the Prp isoforms were compartmentalized within the reproductive tract of the ram. Immunoblotting with the three antibodies showed that the complete protein and both N- and C-terminally truncated and glycosylated isoforms are present within cauda epididymal fluid and seminal plasma. Moreover, we demonstrate that in these fluids, the Prp(C) isoforms are both in a soluble state as well as associated with small membranous vesicles (epididymosomes). We also report that only one major glycosylated 25 kDa C-terminally truncated Prp(C) isoform is associated with sperm from the testis, cauda epididymis, and semen, and this form is also present in the sperm cytoplasmic droplets that are released during maturation. In sperm, this C-terminal truncated form was found to be associated with membrane lipid rafts present in the mature sperm, suggesting a role for it in the terminal stages of sperm maturation.  相似文献   

15.
Tissue and cell specificity of immobilin biosynthesis   总被引:1,自引:0,他引:1  
The mechanisms for the initiation of sperm motility have been poorly understood until recently. Immobilin is a novel mucin glycoprotein of high molecular weight found in the cauda epididymis of the rat that, at concentrations equivalent to those found in native cauda epididymal fluid, reversibly inhibits sperm motility. In this study, immobilin was purified from rat cauda epididymal fluid to apparent homogeneity and used to generate polyclonal antibody in rabbits. The antibody was characterized by immunoblotting, and immunofluorescence was used to localize immobilin in paraffin sections of components of the reproductive system of adult male rats. Immobilin was not detectable in the efferent duct and was first detectable in the apical portion of some epithelial cells of the initial segment of the caput epididymis. Immobilin was detectable intracellularly only in cells of the caput epididymis. In the corpus and cauda epididymis immobilin was detectable only in the lumen of the tubules. Immunoprecipitation of immobilin radiolabeled in vitro confirmed that immobilin biosynthesis in the adult rat is restricted to the caput epididymis. Principal cells in the caput epididymis synthesize immobilin and secrete it into the lumen of the tubules to travel with the sperm into the cauda.  相似文献   

16.
Monoclonal antibody 4E9, which was raised against a partially purified detergent extract of rat caudal epididymal sperm, recognizes the tail of sperm from the cauda, but not from caput epididymidis, as well as epithelial cells in a restricted region of the distal caput/corpus epididymidis and proteins in epididymal fluid from corpus and cauda epididymidis. The antigen is apparently a glycoprotein, since it is retained on a Ricinus communis agglutinin l lectin column. Epididymal fluid antigens have apparent MrS of 38–26 kD, whereas the memrane-associated form of the molecule has an Mr of 26 kD. Immunocytochemical data and Western immunoblot data suggest that the membrane antigen is derived from the fluid antigen, which, in turn, is secrteted by the epididymal epithelium. Characterization of the membrane antigen indicates that it is tightly associated with the sperm surface, behaving as though it is an integral membrane protein. The antigen persists on ejaculated sperm. © 1994 Wiley-Liss, Inc.  相似文献   

17.
A 23 kDa polypeptide has been identified on the flagellum of sperm obtained from the cauda epididymis of the golden hamster. A monospecific antiserum to the 23 kDa hamster polypeptide was prepared and used to study its distribution on sperm, in the epididymis, and in epididymal fluid. In the cauda, the polypeptide is found on the midpiece and endpiece of the sperm tail, in detergent extracts of sperm, and in epididymal luminal fluid-enriched fractions. It is not present on sperm or in luminal fluid-enriched fractions from the caput epididymis. Immunocytochemical staining of epididymal tissue has demonstrated the 23 kDa polypeptide in the Golgi region of the principal cells of the proximal cauda and on sperm in the tubules of this segment and in tubules distal to it. Antiserum to the 23 kDa golden hamster polypeptide cross-reacts with sperm from rats and Chinese hamsters, but not with sperm from rabbits, cattle, mice, and guinea pigs. The antigen is localized to the tail of sperm obtained from the cauda of the rat and from the distal caput of the Chinese hamster. Immunoblots of detergent extracts of sperm and luminal fluid-enriched fractions from these two species reveal a 26 dKa polypeptide that is immunologically related to the golden hamster polypeptide.  相似文献   

18.
In the present study we report the identification of a novel epididymis-specific secretory glycoprotein, E-3, which is a sperm-associated isoantigen containing defensin- and lectin-like motifs. E-3 was detected in rat epididymal fluid and in sperm extracts by two-dimensional (2-D) Western blotting using rat hyperimmune sera raised against rat sperm. The immunoreactive spot of approximately 28 kDa with an isoelectric point (pI) of 3.5 was cored from silver-stained gels. Microsequencing by tandem mass spectrometry and database searches revealed several peptides to be novel sequences. Degenerate deoxyinosine-containing primers corresponding to the novel peptides were used in rapid amplification of cDNA ends and polymerase chain reaction to clone E-3 from a rat epididymal cDNA library. A 449-base pair nucleotide sequence was subsequently obtained consisting of a complete open reading frame (ORF) of 111 amino acids, which showed similarity to the defensin and lectin families. The first 21 amino acids constituted a putative signal peptide, suggesting that E-3 is a secretory protein. Mature E-3 protein corresponding to amino acids 22-111 was expressed in E. coli, and chickens were immunized with recombinant E-3 (rE-3). The resulting anti-rE-3 antisera recognized the recombinant immunogen as well as a "native" protein of 28 kDa, pI 2.5-3.5 in both epididymal fluid and in sperm extracts on 2-D Western blots. Northern hybridization indicated that E-3 mRNA was present in the epididymis but not in testis or other tissues, and that E-3 mRNA was predominantly expressed in the corpus and cauda of the epididymis, but not in the initial segment or caput. Similarly, Western blots detected the E-3 protein only in the epididymal fluid and sperm from the corpus and caudal regions. Finally, indirect immunofluorescence localized E-3 on the entire tail, and with less intensity on the head of the sperm. These observations indicate that E-3 is a secreted epididymal protein that becomes associated with the sperm as it transits through the corpus and cauda. The presence of a defensin-like motif suggests that E-3 may play a role in protecting the sperm from microbial infections in the epididymis and in the female reproductive tract.  相似文献   

19.
The present study evaluates the protective effect of α‐lipoic acid (LA) against arsenic‐induced testicular and epididymal oxidative damage in rats. Arsenic caused significant reduction in the reproductive organ weights, serum testosterone levels, testicular daily sperm count, epididymal sperm count, sperm motility, sperm viability, and sperm membrane integrity. Significant reduction in the activity levels of superoxide dismutase, catalase, and glutathione levels with a concomitant increase in the lipid peroxidation and protein carbonyl content in the testis and the cauda epididymis of arsenic‐exposed rats. Arsenic intoxication also enhanced the testicular caspase‐3 mRNA levels, disorganization of testicular and cauda epididymal architecture as well as increased arsenic content in the testis and the cauda epididymis of rats. Arsenic exposure also deteriorated fertility ability in male rats over controls. Conversely, α‐LA negated the testicular and cauda epididymal oxidative stress and restored the male reproductive health in arsenic‐exposed rats.  相似文献   

20.
CD52 is a leukocyte differentiation antigen first discovered in humans as expressed on the surface of lymphocytes, monocytes and eosinophils. The human CD52 is found on chromosome 1, and two alleles are both known to be reasonably common. A closely homologous gene has been identified in the cynomologous monkey and related genes have been found in mouse, rat and dog. The role of CD52 in lymphocyte is still unclear but the anti-CD52 antibodies named CAMPATH-1 antibodies are largely used for therapy where depletion of lymphocytes is required. In the past expression of the antigen on progenitors of leukocytes in bone marrow had been excluded, but recent work indicates CD52 is highly expressed on cells with colony-forming and NOD/SCID (non-obese diabetic-severe combined immunodeficiency)-engrafting capacities, both at the mRNA and membrane protein level. We have investigated CD52 expression during development in rat embryos by in situ hybridization. We report here that the antigen is highly expressed in the liver that is the major organ where multipotent hematopietic stem cells differentiate but also in the splancnopleuric mesoderm, at early stages of embryo differentiation, where hematopietic stem cells are suggested to arise. CD52+ cells were found in areas active in vasculogenesis at early embryo stages and in the walls of the vessels in the liver at mid gestation. CD52+ cells were also found to emerge among c-Kit positive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号