首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Starch branching enzyme (SBE, EC 2.4.1.18) activity was followed in developing barley ( Hordeum vulgare L. cv. Golf) caryopses during a period of one month after anthesis. Caryopses with the highest specific activity, and corresponding to a fresh weight of around 60 mg per caryopsis, were homogenized and the soluble extract used for branching enzyme purification by FPLC chromatography. Four branching enzyme activity fractions were resolved. From one of these fractions, which exhibited high activity in both the phosphorylation stimulation and amylose branching assays, a branching enzyme preparation containing two related polypeptides of 51 and 50 kDa was obtained. Native polyacrylamide gel electrophoresis and gel filtration showed that the 51/50-kDa polypeptide is monomeric. A combination of phosphorylation stimulation and amylose branching gel assays, SDS-PAGE, and TLC was used to demonstrate the branching activity of the 51/50-kDa polypeptide. The activity was further confirmed by spectroscopic analyses of iodine-glucan complexes. SBEs from four different plant species were compared using the phosphorylation stimulation gel assay.  相似文献   

2.
For transformation and somatic hybridisation of barley ( Hordeum vulgare L.), it is necessary to develop an efficient and reliable system for routne plant regeneration from protoplasts. Freshly-isolated cell suspension-derived protoplasts were treated with both rectangular and exponential electric pulses with the aim of increasing plating efficiency as well as to stimulate regenerative capacity. Suspensions were initiated from callus from immature embryos of barley (cv. Dissa). Increasing field strength, capicitance, or number of applied pulses resulted in a decreased protoplast viability and plating efficency. However, the regeneration of albino leaves and albino plantlets from electro-treated protoplasts was stimulated in comparison with controls.  相似文献   

3.
A novel shrunken endosperm mutant of barley   总被引:3,自引:0,他引:3  
Although mutations affecting several enzymes of the starch synthetic pathway in developing cereal endosperm have been isolated, none has a major effect on soluble starch synthase We report a new recessive shrunken endosperm mutant in barley ( Hordeum vulgare L. cv. Bomi-like), shx , which has 25% of normal starch content. We have assayed the activity of sucrose synthase (EC 2.4.1.13), ADP and UDP-glucose pyrophosphorylases (EC 2.7.7.27 and 2.7.7.9), branching enzyme (EC.2.4.1.18), and granule-bound and soluble starch synthase (EC 2.4.1.21) in shx. Sucrose synthase activity is reduced by 49% and UDP-glucose pyrrphosphorylase is 80% of the normal level. Branching enzyme and starch-bound starch synthase activities are normal, but ADP-glucose pyrophosphorylase activity is reduced by 72%. The soluble starch synthase that is primer-independent in the presence of sodium citrate shows 14% of normal activity in shx. whereas the primer-dependent form is unaffected. This lower starch synthase activity in shx cannot be explained by inhibition, substrate destruction or lack of primer. Although several starch-synthetic enzymes are affected, it is suggested that the primer independent from of soluble starch synthase may be the primary-site of the mutation in shx.  相似文献   

4.
5.
The major constituents of the epi- and intracuticular lipids of primary leaves of 8 cultivars of barley ( Hordeum vulgare L.) have been studied together with cuticular transpiration rates. The total amount of analysed cuticular lipids ranged from 9.6 to 13.4 μg cm−2 and was dominated by the epicuticular fraction, which made up 73–84% of the total. There were variations in the percentages of the analysed lipid classes, alkanes, esters, aldehydes, β-diketones and alcohols, between epi- and intracuticular lipids among individual cultivars, but no clear tendency in these variations, except for the aldehydes, was found. The epicuticular lipids were richer in aldehydes than the intracuticular lipids. The cuticular transpiration rates were poorly correlated with the levels or composition of epi-, intra- or total cuticular lipids. The cuticular transpiration rates were considerably altered as a response to a water stress treatment, but these changes could not be correlated with any changes in amount or composition of the cuticular lipids. From these results it is concluded that some property other than amount or composition of cuticular lipids is the most important in regulation of water diffusion through the cuticle.  相似文献   

6.
Exogenously applied D-tryptophan (D-Trp) was more effective than L-Trp in inducing elongation of coleoptile segments of a normal barley ( Hordeum vulgare L. cv. Akashinriki) strain and a semi-dwarf strain with lower endogenous indole-3-acetic acid (IAA) level. D-cycloserine, an inhibitor of D-aminotransferase, completely inhibited both the D- and L-Trp-induced elongation of both strains. Addition of D-Trp increased IAA levels in both strains 4-fold over endogenous levels. The increase in IAA level was completely inhibited by D-cycloserine. The endogenous L-Trp level of semi-dwarf coleoptiles was similar to that of normal ones. These results suggested that IAA is synthesized by the conversion of L-Trp to indole-3-pyruvic acid via D-Trp in both strains, and that the lower IAA level of the semi-dwarf strain probably is a result of the impeded IAA biosynthesis involved in D-Trp.  相似文献   

7.
Abstract A comparison was made of the content of total and some individual fatty acids in grains of nine barley varieties grown at six sites in Belgium. The varieties represented six- and two-rowed winter types and two-rowed spring types. The results showed that the winter types contain more linolenic acid (C18 : 3) than spring types and that six-rowed barleys have less total fatty acids than two-rowed barleys, due mainly to a low concentration of palmitic (C16:0), oleic (CI8 : 1) and linoleic (C18 : 2) acids. Analysis of variance showed that fatty acid content is affected by both the genotype and the environment and multiple regression analysis suggested that weather conditions before and after flowering affected lipid composition.  相似文献   

8.
One hundred and forty six barley doubled-haploid lines (DH lines) were tested for variation in grain yield, yield components, plant height, and heading date after artificial infection with a German isolate of barley yellow dwarf virus (BYDV-PAV-Braunschweig). Of these 146 lines 76 were derived from the cross of the barley yellow dwarf virus (BYDV) tolerant cultivar ’Post’ to cv ’Vixen’ (Ryd2) and 70 from the cross of Post to cv ’Nixe’. Phenotypic measurements were gathered on both non-infected plants and plants artificially inoculated with BYDV-PAV by viruliferous aphids in pot and field experiments for three years at two locations. For all traits a continuous variation was observed suggesting a quantitative mode of inheritance for tolerance against BYDV-PAV. Using skeleton maps constructed using SSRs, AFLPs and RAPDs, two QTLs for relative grain yield per plant after BYDV infection, explaining about 47% of the phenotypic variance, were identified in Post × Vixen at the telomeric region of chromosome 2HL and at a region containing the Ryd2 gene on chromosome 3HL. In Post × Nixe, a QTL was found in exactly the same chromosome 2HL marker interval. In this cross, additional QTL were mapped on chromosomes 7H and 4H and together these explained about 40% of the phenotypic variance. QTL for effects of BYDV infection on yield components, plant height, and heading date generally mapped to the same marker intervals, or in the vicinity of the QTL for relative grain yield, on chromosomes 2HL and 3HL, suggesting that these regions are of special importance for tolerance to the Braunschweig isolate of BYDV-PAV. Possible applications of marker-assisted selection for BYDV tolerance based on these results are discussed. Received: 1 December 2000 / Accepted: 9 March 2001  相似文献   

9.
10.
11.
12.
A study was conducted comparing the organization of chlorophyll during development of the photosynthetic apparatus in dark-grown and light-grown pine and barley. The rationale was that gymnosperms, but not angiosperms, have a capacity to synthesize chlorophyll in darkness. Seedlings of Pinus brutia were germinated and grown in darkness or under photoperiodic (day/night) conditions. The low-temperature (77 K) fluorescence spectra of newly-emerging dark-grown seedlings exhibited a single fluorescence band peaking at 678–679 nm, which decayed primarily with a ∼5.5 ns lifetime. Over the first few days of growth, the emission shifted to longer wavelengths and a subnanosecond lifetime component became prevalent. After several days of dark growth the emission spectrum and lifetime profile of the low temperature fluorescence came to resemble those of light-grown pine and barley. At room temperature, dark-grown pine showed little variable fluorescence, though addition of DCMU caused a substantial fluorescence rise. Illumination with moderate light for a few hours was sufficient to 'photoinduce' the appearance of normal variable fluorescence. At 77 K, DCMU-treated samples clearly showed a very long-lived (∼40 ns) fluorescence lifetime component in light-grown pine and barley. This component was undetectable in dark-grown pine. If, however, dark-grown samples were illuminated either before or after DCMU addition and then frozen to 77 K, the ∼40 ns lifetime component appeared at a fluorescence intensity similar to that in light-grown samples. These results are explained primarily in terms of photoactivation of the photosystem II (PSII) donor side. The temporary maintenance of PSII in an inactive, highly-quenched state is suggested to provide an available, yet protected precursor for active PSII.  相似文献   

13.
The age of the stock plants was important for the barley ( Hordeum vulgare L. cv. Perth) protoplast viability. Light conditions under which the stock plants were grown also affected the viability of the protoplasts. Greenhouse-grown plants yielded much higher number of protoplasts than dark-grown plants, but protoplast viability was better when protoplasts were isolated from etiolated plants. Light supplied during protoplast culture affected protoplast viability within the first 24 h of culture. Cellulase R-10 (Onozuka) was better than Cellulysin (Calbiochem) and Cellulase + Macerozyme R-10 (Onozuka) for barley mesophyll protoplast isolation. Cellulase R-10 (Onozuka) was fractionated on a G-75 Sephadex column. The eluted fractions were tested for their ability to release barley mesophyll protoplasts and for their toxicity towards the protoplasts. Only a small part of the Cellulase R-10 was necessary for protoplast isolation from barley leaves. When the fractionated cellulase was analysed by isoelectric focusing, this part of the cellolase appeared as a single band.  相似文献   

14.
西藏青稞4个B组醇溶蛋白基因的克隆和特征   总被引:1,自引:0,他引:1  
从两份西藏青稞材料中分离克隆出4个B组醇溶蛋白基因(BH1—BH4),DNA测序结果表明:它们均包含完整的开放阅读框。推断的氨基酸序列与先前报道的大麦B组醇溶蛋白具有相同的蛋白质基本结构。系统分析表明:它们推断的氨基酸序列与栽培大麦中的B组醇溶蛋白具有较高的相关性,与野生大麦和山羊草属的醇溶谷蛋白相似性较低。并且,在4个基因BH1—BH4中,BH1与先前报道的B组醇溶蛋白基因有较低的序列相似性,因此我们对BH1基因进行了原核表达,含该基因的表达载体在大肠杆菌中表达出相对分子质量为28.15kDa并以包涵体形式存在的蛋白,进一步对其在青稞谷粒品质改良中的潜在价值进行了探讨。  相似文献   

15.
The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy- lopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio- synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de- velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy- lopectin changed continually during the development of rice grains and varied between two rice culti- vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.  相似文献   

16.
17.
Spikes of barley ( Hordeum vulgare L.) cultivar Bomi and high-lysine mutants Riso 1508 and Riso 56 were cultured on liquid media at varying N and sucrose levels. Bomi accumulated N in response to increasing N levels in the medium and a higher level was reached than in spikes of intact plants. The distribution of N in salt-soluble, hordein, and non-protein N fractions appeared to be normal. Endosperm dry weight and starch were lower than in intact plants and declined at higher N levels. A linear relationship was observed between starch content and the concentration of sucrose in the endosperm water. Uptake of culture medium by the spikes was affected by both N and sucrose concentration. The mutants had lower dry weights and starch contents, and higher sucrose contents than Bomi. At high N levels, the mutants accumulated less hordein, and more non-protein N than Bomi.  相似文献   

18.
Leaf senescence is the final developmental stage of a leaf. The progression of barley primary leaf senescence was followed by measuring the senescence-specific decrease in chlorophyll content and photosystem II efficiency. In order to isolate novel factors involved in leaf senescence, a differential display approach with mRNA populations from young and senescing primary barley leaves was applied. In this approach, 90 senescence up-regulated cDNAs were identified. Nine of these clones were, after sequence analyses, further characterized. The senescence-associated expression was confirmed by Northern analyses or quantitative RealTime-PCR. In addition, involvement of the phytohormones ethylene and abscisic acid in regulation of these nine novel senescence-induced cDNA fragments was investigated. Two cDNA clones showed homologies to genes with a putative regulatory function. Two clones possessed high homologies to barley retroelements, and five clones may be involved in degradation or transport processes. One of these genes was further analysed. It encodes an ADP ribosylation factor 1-like protein (HvARF1) and includes sequence motifs representing a myristoylation site and four typical and well conserved ARF-like protein domains. The localization of the protein was investigated by confocal laser scanning microscopy of onion epidermal cells after particle bombardment with chimeric HvARF1-GFP constructs. Possible physiological roles of these nine novel SAGs during barley leaf senescence are discussed.  相似文献   

19.
Kay Denyer  Alison M. Smith 《Planta》1992,186(4):609-617
Soluble starch synthase was purified 10000-fold from developing embryos of pea (Pisum sativum L.). The activity was resolved into two forms which together account for most if not all of the soluble starchsynthase activity in the embryo. The two isoforms differ in their molecular weights but are similar in many other respects. Their kinetic properties are similar, neither isoform is active in the absence of primer, and both are unstable at high temperatures, the activity being abolished by a 20-min incubation at 45° C. Both isoforms are recognised by antibodies raised to the granule-bound starch synthase of pea. Isoform II, which has the same molecular weight (77 kDa) as the granulebound enzyme, is recognised more strongly than Isoform I.  相似文献   

20.
Seedlings of barley ( Hordeum vulgare L. cv. Agneta) were grown hydroponically under continuous light, constant temperature and relative humidity. During the first two weeks, the relative growth rate (RGR) was kept at 25% by limiting only the supply of nitrogen. The cultures were then transferred to nitrogen-free media and the amounts of fructan, starch, sucrose, glucose and fructose in sink and source leaves were measured at 0, 12, 24, 48, 72, 120 and 156 h. The activities of two key enzymes in fructan metabolism, sucrose:sucrose fructosyltransferase (SST), fructan exohydrolase (FEH), as well as acid invertase were also measured in the two types of leaves.
The fructan and starch levels in both sink and source leaves increased during nitrogen deficiency. The highest increase in starch was 200% of the control while for fmctans a 700% increase was recorded. The activity of SST increased parallel to fructan accumulation in sink leaves. However the FEH activity was constant and not affected by nitrogen deficiency. The invertase activity both in sink and source leaves was reduced by nitrogen deficiency. More fructans as well as sucrose and fructose accumulated in source leaves compared to sink leaves both before and after nitrogen starvation. The results show that fructan is the major carbohydrate reserve accumulating under nitrogen deficiency both in sink and source leaves in barley plants. The induction of fructan accumulation in sink leaves caused by nitrogen deficiency is intimately connected with the regulation of SST  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号