首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac hypertrophy is a compensatory response of myocardial tissue upon increased mechanical load. Of the mechanical factors, stretch is rapidly followed by hypertrophic responses. We tried to elucidate the role of angiotensin II (AII), endothelin-1 (ET-1) and transforming growth factor- (TGF-) as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. We collected conditioned medium (CM) from stretched cardiomyocytes and from other stretched cardiac cells, such as cardiac fibroblasts, endothelial cells and vascular smooth muscle cells (VSMCs). These CMs were administered to stationary cardiomyocytes with or without an AII type 1 (AT1) receptor antagonist (losartan), an ET-1 type A (ETA) receptor antagonist (BQ610), or anti-TGF- antibodies. By measuring the mRNA levels of the proto-oncogene c-fos and the hypertrophy marker gene atrial natriuretic peptide (ANP), the molecular phenotype of the CM-treated stationary cardiomyocytes was characterized.Our results showed that c-fos and ANP expression in stationary cardiomyocytes was increased by AII release from cardiomyocytes that had been stretched for 60 min. Stretched cardiomyocytes, cardiac fibroblasts and endothelial cells released ET-1 which led to increased c-fos and ANP expression in stationary cardiomyocytes. ET-1 released by stretched VSMCs, and TGF- released by stretched cardiac fibroblasts and endothelial cells, appeared to be paracrine mediators of ANP expression in stationary cardiomyocytes.These results indicate that AII, ET-1 and TGF- (released by cardiac and vascular cell types) act as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Therefore, it is likely that in stretched myocardium the cardiomyocytes, cardiac fibroblasts, endothelial cells and VSMCs take part in intercellular interactions contributing to cardiomyocyte hypertrophy.  相似文献   

2.
Growth factors and hormones may play an autocrine/paracrine role in mechanical stress-induced cardiac hypertrophy. Using an in vitro model of mechanical stress, i.e. stretch of cardiomyocytes and cardiac fibroblasts, we tested the involvement of growth factors and hormones in this process.We found that conditioned medium (CM) derived from 4 h cyclicly (1 Hz) stretched cardiomyocytes increased the rate of protein synthesis in static cardiomyocytes by 8 ± 3%. Moreover, CM derived from 2 h stretched fibroblasts increased the rate of protein synthesis in static fibroblasts as well as in static cardiomyocytes by 8 ± 2 and 6 ± 2%, respectively. Analysis of CM using size-exclusion HPLC showed that cardiomyocytes and fibroblasts released at least three factors with MW 10 kD, their quantities being time-dependently increased by stretch. Subsequent analyses using immunoassays revealed that cardiomyocytes released atrial natriuretic peptide (ANP) and transforming growth factor-beta1 (TGF1) being increased by 45 ± 17 and 21 ± 4% upon 4 h of stretch, respectively. Fibroblasts released TGF1 and very low quantity of endothelin-1 (ET-1). The release of TGF1 was significantly increased by 18 ± 4% after 24 h of stretch in fibroblasts. Both cell types released no detectable amount of angiotensin II (Ang II).In conclusion, upon cyclic stretch cardiomyocytes and fibroblasts secrete growth factors and hormones which induce growth responses in cardiomyocytes and fibroblasts in an autocrine/paracrine way. TGF secreted by cardiomyocytes and fibroblasts, and ANP secreted by cardiomyocytes are likely candidates. We found no evidence for the involvement of Ang II and ET-1 in autocrine/paracrine mechanisms between cardiac cell types.  相似文献   

3.
To test the hypotheses that cyclic stretch of 1) cardiac myocytes produces factors that trigger angiogenic events in coronary microvascular endothelial cells (CMEC) and 2) CMEC enhances the expression of growth factors, cardiac myocytes and CMEC were subjected to cyclic stretch in a Flexercell Strain Unit. Vascular endothelial growth factor (VEGF) but not basic fibroblast growth factor mRNA and protein levels increased approximately twofold in myocytes after 1 h of stretch. CMEC DNA synthesis increased approximately twofold when conditioned medium from stretched myocytes or VEGF protein was added, and addition of VEGF neutralizing antibody blocked the increase. CMEC migration and tube formation increased with the addition of conditioned media but were markedly attenuated by VEGF neutralizing antibody. Myocyte transforming growth factor-beta [corrected] (TGF-beta) increased 2.5-fold after 1 h of stretch, and the addition of TGF-beta neutralizing antibodies inhibited the stretch-induced upregulation of VEGF. Stretch of CMEC increased VEGF mRNA in these cells (determined by Northern blot and RT-PCR) and increased the levels of VEGF protein (determined by ELISA analysis) in the conditioned media. Therefore, cyclic stretch of cardiac myocytes and CMEC appears to be an important primary stimulus for coronary angiogenesis through both paracrine and autocrine VEGF pathways. These data indicate that 1) CMEC DNA synthesis, migration, and tube formation are increased in response to VEGF secreted from stretched cardiac myocytes; 2) VEGF in CMEC subjected to stretch is upregulated and secreted; and 3) TGF-beta signaling may regulate VEGF expression in cardiac myocytes.  相似文献   

4.
Passive stretch of the heart has a direct effect on cardiomyocytes and other cell types including cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells (VSMCs). Cardiomyocytes are targets for the action of peptide growth factors found in myocardium, suggesting an autocrine or paracrine model of the hypertrophic process. In this study we examined stretch-dependent cellular communication between cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. Stationary cardiomyocytes were incubated with stretch-conditioned medium (CM0-CM60) derived from stretched (for 0-60 min) cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. The expression levels of protooncogenes (as c-fos, c-jun, and fra-1) were measured, and as an indication of a hypertrophic response the expression of atrial natriuretic peptide (ANP) was measured. Stationary cardiomyocytes that have been incubated for 30 min with CM from stretched (for 0-60 min) cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs showed distinct gene expression patterns that were time-dependent and cell-type specific. In stationary cardiomyocytes, CM derived from stretched cardiomyocytes caused decreased c-fos and fra-1 expression by 37 and 20%, respectively (CM30), elevated c-jun expression by 20% (CM45-CM60), and increased ANP expression by 106% (CM45). CM derived from stretched cardiac fibroblasts caused increased c-fos expression by 41% (CM60), no significant changes in c-jun expression, and increased fra-1 and ANP expression by 39 and 20%, respectively (CM45). CM derived from stretched VSMCs induced an initial decrease in c-fos expression followed by an increase of 13% (CM45) and induced increased c-jun, fra-1, and ANP expression by 39, 24, and 22%, respectively. CM15-CM60 derived from stretched endothelial cells caused decreased c-fos, c-jun and fra-1 expression by 20, 25, and 25%, respectively, and increased ANP expression by 18%. Our data indicate that gene expression of cardiomyocytes in stretched myocardium is regulated by mediators released by cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. This observation emphasizes the involvement of nonmyocyte cells in the early stages of cardiomyocyte hypertrophy caused by cardiac stretch.  相似文献   

5.
The heart is a resistin target tissue and can function as an autocrine organ. We sought to investigate whether cyclic mechanical stretch could induce resistin expression in cardiomyocytes and to test whether there is a link between the stretch-induced TNF-alpha and resistin. Neonatal Wistar rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation at 60 cycles/min. Cyclic stretch significantly increased resistin protein and mRNA expression after 2-18 h of stretch. Addition of PD-98059, TNF-alpha antibody, TNF-alpha receptor antibody, and ERK MAP kinase small interfering RNA 30 min before stretch inhibited the induction of resistin protein. Cyclic stretch increased, whereas PD-98059 abolished, the phosphorylated ERK protein. Gel-shift assay showed a significant increase in DNA-protein binding activity of NF-kappaB after stretch, and PD-98059 abolished the DNA-protein binding activity induced by cyclic stretch. DNA binding complexes induced by cyclic stretch could be supershifted by p65 monoclonal antibody. Cyclic stretch increased resistin promoter activity, whereas PD-98059 and p65 antibody decreased resistin promoter activity. Cyclic stretch significantly increased TNF-alpha secretion from myocytes. Recombinant resistin protein and conditioned medium from stretched cardiomyocytes reduced glucose uptake in cardiomyocytes, and recombinant small interfering RNA of resistin or TNF-alpha antibody reversed glucose uptake. In conclusion, cyclic mechanical stretch enhances resistin expression in cultured rat neonatal cardiomyocytes. The stretch-induced resistin is mediated by TNF-alpha, at least in part, through ERK MAP kinase and NF-kappaB pathways. Glucose uptake in cardiomyocytes was reduced by resistin upregulation.  相似文献   

6.
7.
Numerous neurohumoral factors such as endothelin (ET)-1 and angiotensin (Ang) II as well as the stretch stimulus act concertedly in the in vivo overloaded heart in inducing hypertrophy and failure. The primary culture of rat neonatal cardiomyocytes is the only in vitro model that allows the comparative analysis of growth responses and signaling events in response to different stimuli. In the present study, we examined stretched rat cardiomyocytes grown on flexible bottomed cultured plates for hypertrophic growth responses (protein synthesis, protein/DNA ratio, and cell volume), F-actin filaments rearrangement (by confocal, laser scanning microscopy), and for signaling events (activation of phospholipase C [PLC-β, protein kinase C [PKC], mitogenactivated protein [MAP] kinases] and compared these responses with ET-1 (10−8 M)-stimulated cells. Cyclic stretch for 48 h induced hypertrophic growth in cardiomyocytes indicated by increases in the rate of protein synthesis, cell volume, and diameter, which were less pronounced in comparison to stimulation by ET-1. During cyclic stretch, we observed disoriented F-actin, particularly stress-fibers whereas during ET-1 stimulation, F-actins rearranged clearly in alignment with sarcomeres and fibers. The upstream part of signaling by cyclic stretch did not follow the PLCβ-PKC cascade, which, in contrast, was strongly activated during ET-1 stimulation. Cyclic stretch and, to greater extent, ET-1 stimulated downstream signaling through ERK, p38 MAP kinase, and JNK pathways, but the, involvement of tyrosine kinase and PI3 kinase-Akt signaling during cyclic stretch could not be proven. Taken together, our results demonstrate that both cyclic stretch and ET-1 induce hypertrophic responses in cardiomyocytes with different effects on organization of F-actin stress fibers in case of stretch. Furthermore, on the short-term basis, cyclical stretch, unlike ET-1, mediates its hypertrophic response not through activation of PLC-β and PKC but more likely through integrin-linked pathways, which both lead to downstream activation of the MAP kinase family.  相似文献   

8.
Mechanical force can induce a number of fundamental short- and long-term responses in myocardium. These include alterations in ECM, activation of cell-signaling pathways, altered gene regulation, changes in cell proliferation and growth, and secretion of a number of peptides and growth factors. It is now known that a number of these autocrine/paracrine factors are secreted from both cardiomyocytes and ventricular cardiac fibroblasts (CFb) in response to stretch. One such substance is IGF-I. IGF-I is an important autocrine/paracrine factor that can regulate physiological or pathophysiological responses, such as hypertrophy. In this study, we addressed the possible effects of mechanical perturbation, biaxial strain, on IGF-I secretion from adult rat CFb. CFb were subjected to either static stretch (3-10%) or cyclic stretch (10%; 0.1-1 Hz) over a 24-h period. IGF-1 secretion from CFb in response to selected stretch paradigms was examined using ELISA to measure IGF-I concentrations in conditioned media. Static stretch did not result in any measurable modulation of IGF-I secretion from CFb. However, cyclic stretch significantly increased IGF-I secretion from CFb in a frequency- and time-dependent manner compared with nonstretched controls. This stretch-induced increase in secretion was relatively insensitive to changes in extracellular [Ca(2+)] or to block of L-type Ca(2+) channels. In contrast, thapsigargin, an inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPase, remarkably decreased stretch-induced IGF-I secretion from CFb. We further show that IGF-I can upregulate mRNA expression of atrial natriuretic peptide in myocytes. In summary, cyclic stretch can significantly increase IGF-I secretion from CFb, and this effect is dependent on a thapsigargin-sensitive pool of intracellular [Ca(2+)].  相似文献   

9.
Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease.  相似文献   

10.
The expression of TRB3 (tribbles 3), an apoptosis regulated gene, increases during endoplasmic reticulum (ER) stress. How mechanical stress affects the regulation of TRB3 in cardiomyocytes during apoptosis is not fully understood. An in vivo model of aorta-caval shunt in adult rats demonstrated the increased TRB3 protein expression in the myocardium. The tumor necrosis factor-alpha (TNF-α) antagonist etanercept reversed the TRB3 protein expression and cardiomyocyte apoptosis induced by AV shunt. An in vitro model of cyclic stretch in neonatal rats was also used to investigate TRB3 expression. We hypothesized that cardiomyocyte apoptosis induced by cyclic stretch is TRB3 dependent. Neonatal rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation, at 60 cycles/min. Cyclic stretch significantly increased TRB3 protein and mRNA expression. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, TNF-α antibody and etanercept 30 min before stretch reversed the induction of TRB3 protein induced by stretch. Cyclic stretch induced the DNA-binding activity of growth arrest and DNA damaged inducible gene-153 (GADD153) by electrophoretic mobility shift assay. SP600125, JNK siRNA, TNF-α antibody and etanercept abolished the binding activity induced by stretch. TRB3 promoter activity was enhanced by stretch and TRB3-mut plasmid, SP600125, TNF-α antibody and etanercept attenuated TRB3 promoter activity induced by stretch. Exogenous administration of TNF-α recombinant protein to the non-stretched cardiomyocytes increased TRB3 protein expression similar to that seen after stretch. Cyclic stretch induced cardiomyocyte apoptosis is inhibited by TRB3 siRNA and etanercept. The stretch-induced TRB3 is mediated by TNF-α、JNK and GADD153 pathway. These results indicate that TRB3 plays an important role in stretch-induced cardiomyocyte apoptosis.  相似文献   

11.
Small vessel pulmonary endothelial cells were obtained from rat fetal lung at day 20 of gestation, and were maintained in culture to passage three for study. Endothelial cells grown on a collagen matrix with Dulbecco's minimal essential medium: Ham's F12 medium (1:1, v/v) supplemented with 20 ml/l fetal bovine serum, bovine pituitary extract (50 mg/l), endothelial cell growth supplement (100 mg/l), hydrocortisone (1 mg/l) and an increased (10 mmol/l) magnesium concentration retained the characteristic endothelial cell marker factor VIII antigen during the third passage in culture. The factors responsible for small vessel growth in the developing fetal lung are unknown. To test the hypothesis that small vessel pulmonary endothelial cells would respond to autocrine or paracrine growth factors the effects of conditioned media from fetal lung endothelial cells, fibroblasts and pneumocytes from lungs of the same gestational age were studied in vitro. None of the tested conditioned media had any effect on endothelial cell DNA synthesis in the presence of 20 ml/l fetal bovine serum. Since no paracrine or autocrine effects of conditioned media were observed, the effect of other growth factors that could be derived from the circulation, or from storage sites in subcellular matrix, were studied for effect. When endothelial cells were studied in the presence of 20 ml/l fetal bovine serum and 100 mg/l endothelial cell growth supplement they had enhanced DNA synthesis in response to the progression-type growth factors insulin (5 mg/l), insulin-like growth factor-I and insulin-like growth factor-II (20 micrograms/l) and epidermal growth factor (10 micrograms/l). In the absence of serum or endothelial growth supplement endothelial cell DNA synthesis was enhanced by the competence-type growth factors acidic and basic fibroblastic growth factors at 100 micrograms/l and platelet derived growth factor at 10 micrograms/l. In the absence of exogenous competence-type growth factors neutralizing antibodies to basic fibroblast growth factor reduce DNA synthesis. Of various cytokines tested only interleukin-1 (1 x 10(3) U/l) and tumor necrosis factor (25 x 10(4) U/l) had an effect on endothelial cell DNA synthesis. Endothelial cell division during fetal lung development may be controlled by progression growth factors present in serum, and by either autocrine release of the competence factor basic fibroblast growth factor or paracrine release of platelet-derived growth factor by other cell types.  相似文献   

12.
Signalling Pathways for Cardiac Hypertrophy   总被引:3,自引:0,他引:3  
Mechanical stretch is an initial factor for cardiac hypertrophy in response to haemodynamic overload (high blood pressure). Stretch of cardiomyocytes activates second messengers such as phosphatidylinositol, protein kinase C, Raf-1 kinase and extracellular signal-regulated protein kinases (ERKs), which are involved in increased protein synthesis. The cardiac renin–angiotensin system is linked to the formation of pressure-overload hypertrophy. Angiotensin II increases the growth of cardiomyocytes by an autocrine mechanism. Angiotensin II-evoked signal transduction pathways differ among cell types. In cardiac fibroblasts, angiotensin II activates ERKs through a pathway including the Gβγ subunit of Gi protein, Src family tyrosine kinases, Shc, Grb2 and Ras, whereas Gq and protein kinase C are important in cardiac myocytes. In addition, mechanical stretch enhances the endothelin-1 release from the cardiomyocytes. Further, the Na+–H+ exchanger mediates mechanical stretch-induced Raf-1 kinase and ERK activation followed by increased protein synthesis in cardiomyocytes. Not only mechanical stress, but also neurohumoral factors induce cardiac hypertrophy. The activation of protein kinase cascades by norepinephrine is induced by protein kinase A through β-adrenoceptors as well as by protein kinase C through -adrenoceptors.  相似文献   

13.
血管钠肽对中度低氧诱导的心肌细胞蛋白合成有抑制作用   总被引:3,自引:1,他引:3  
Lu SY  Zhu MZ  Guo HT  Yu J  Wei QM 《生理学报》2002,54(1):7-11
实验探讨了心房钠尿肽家族新成员血管钠肽(vasonatrin peptide,VNP)对中度低氧诱导的心肌细胞蛋白合成的影响,在培养的新生大鼠心肌细胞上,用四唑盐(MTT)比色实验,总蛋白含量测定和^3H-亮氨酸掺入实验等方法观察细胞数和蛋白合成情况,并用放免法测定VNP对细胞内环鸟苷酸(cGMP)和环腺苷酸(cAMP)以及培养上清液中内皮素含理的影响,探讨VNP的作用机制,结果显示,重度低氧24h,心肌细胞数和蛋白合成均降低,而中度低氧显著增加蛋白的合成,具有促心肌细胞肥大的作用,VNP浓度依赖性地抑制中度低氧诱导的心肌细胞蛋白合成增加,并且升高细胞内cGMP水平,降低低氧诱导的培养上清液中内皮素的含量,结果提示,VNP抑制中度低氧诱导的新生大鼠心肌细胞蛋白合成增加,该作用与其升高细胞内cGMP浓度、降低低氧诱导的内皮素合成和/或释放增加有关。  相似文献   

14.
体外模拟心肌缺血微环境,研究骨髓间充质干细胞(MSCs)的旁分泌作用对心肌细胞的影响。以大鼠MSCs各时间点的条件培养液刺激心肌细胞,观察心肌细胞蛋白含量、[3H]-Leu掺入、ANF-荧光素酶(luciferase)表达和心肌细胞面积的变化。MSCs条件培养液处理心肌细胞后,与对照组相比较6h及9h时间点的条件培养液可明显增加心肌细胞蛋白含量、[3H]-Leu掺入、ANF-荧光素酶表达以及心肌细胞面积,其中以6h时间点条件培养液的作用最为显著(P<0.01)。MSCs条件培养液能够通过旁分泌作用刺激心肌细胞肥大,此现象提示移植入心肌缺血区MSCs可能通过旁分泌作用影响心肌细胞,从而参与细胞移植后心功能的改善。  相似文献   

15.
Insulin-like growth factor I (IGF-I), an autocrine/paracrine growth factor involved in myogenesis, has rapid effects on muscle metabolism. In a manner analogous to insulin and mechanical stimuli such as stretch, IGF-I stimulates glucose transport through recruitment of glucose transporters to surface membranes in skeletal muscles. It is known that IGF-I is secreted from skeletal muscle cells in response to stretch. Therefore, we examined whether IGF-I is involved in the mechanism by which mechanical stretch regulates glucose transport using cultured C2C12 myotubes. IGF-I increased 2-deoxy- D-glucose (2-DG) uptake, and this created an additive effect with mechanical stretch, suggesting that these stimuli enhance glucose transport through different mechanisms. In fact, IGF-I-stimulated 2-DG uptake was not blocked by dantrolene (an inhibitor of Ca (2+)release from sarcoplasmic reticulum), whereas the stretch-stimulated effect was abolished. Conversely, the IGF-I-stimulated 2-DG uptake was prevented by phosphatidylinositol 3-kinase inhibitor wortmannin, which did not prevent the stretch-stimulated 2-DG uptake. In addition, experiments using media conditioned by stretched myotubes indicated that a mechanically induced release of locally acting autocrine/paracrine growth factors was not sufficient for induction of 2-DG uptake. Thus, our results demonstrate that mechanical stretch signaling for glucose transport is independent of the mechanism through which IGF-I increases this transport.  相似文献   

16.
新生大鼠心室成纤维细胞条件培养液的促心肌细胞肥大作用   总被引:13,自引:2,他引:11  
Gong SZ  Liu PQ  Lu W  Fu SG  Pan JY 《生理学报》2000,52(1):34-38
利用新生大鼠心室成纤维细胞条件培养液孵育心肌细胞,证实成纤维细胞条件培养液能明显增大心肌细胞的表面积,增加心肌细胞的蛋白含量和「^3H」-亮氨酸「^3H」-Leu)的掺入,上述作用以第3天的条件培养液作用最强,具有剂量依赖性。ETA受体拮抗剂BQ123能部分阻断成纤维细胞条件培养液促进心肌细胞肥大的作用,而AT1受体拮抗剂CV11974和α-肾上腺素受体拮抗剂regitin却无此效果。结果提示:成  相似文献   

17.
Atrial (ANP) and brain (BNP) natriuretic peptides are hormones of myocardial cell origin. These hormones bind to the natriuretic peptide A receptor (NPRA) throughout the body, stimulating cGMP production and playing a key role in blood pressure control. Because NPRA receptors are present on cardiomyocytes, we hypothesized that natriuretic peptides may have direct autocrine or paracrine effects on cardiomyocytes or adjacent cardiac cells. Because both natriuretic peptides and NPRA gene expression are upregulated in states of pressure overload, we speculated that the effects of the natriuretic peptides on cardiac structure and function would be most apparent after pressure overload. To attenuate cardiomyocyte NPRA activity, transgenic mice with cardiac specific expression of a dominant-negative (DN-NPRA) mutation (HCAT D 893A) in the NPRA receptor were created. Cardiac structure and function were assessed (avertin anesthesia) in the absence and presence of pressure overload produced by suprarenal aortic banding. In the absence of pressure overload, basal and BNP-stimulated guanylyl cyclase activity assessed in cardiac membrane fractions was reduced. However, systolic blood pressure, myocardial cGMP, log plasma ANP levels, and ventricular structure and function were similar in wild-type (WT-NPRA) and DN-NPRA mice. In the presence of pressure overload, myocardial cGMP levels were reduced, and ventricular hypertrophy, fibrosis, filling pressures, and mortality were increased in DN-NPRA compared with WT-NPRA mice. In addition to their hormonal effects, endogenous natriuretic peptides exert physiologically relevant autocrine and paracrine effects via cardiomyocyte NPRA receptors to modulate cardiac hypertrophy and fibrosis in response to pressure overload.  相似文献   

18.
Cardiac hypertrophy refers to the abnormal growth of cardiomyocytes, and is often caused by valvular heart disease and hypertension. It involves the activation of growth, including increased protein synthesis and changes in gene expression. Transforming growth factor-1 (TGF-1) may play a central role in protecting the heart during the hypertrophic response by helping to restore normal functions of the affected myocardium. We tested the hypothesis that cardiomyocytes respond to stretch-induced paracrine hypertrophic stimuli with increased expression of TGF-1. To that purpose, we investigated whether angiotensin II (AII), endothelin-1 (ET-1) and TGF-, secreted by stretched cardiac and vascular cells, are involved in the paracrine mechanisms of stretch-induced changes of TGF-1 mRNA expression in stationary (i.e. non-stretched) cardiomyocytes.Our results indicated that TGF-1 mRNA expression in stationary cardiomyocytes was increased by AII release from cardiomyocytes that had been stretched for 30–60 min. Furthermore, it is likely that ET-1 and TGF- were released by stretched cardiac fibroblasts and endothelial cells to induce TGF-1 mRNA expression in stationary cardiomyocytes. Stretched vascular smooth muscle cells did not influence TGF-1 mRNA expression in stationary cardiomyocytes. These results indicate that AII, ET-1 and TGF-, released by cardiac cell types, act as paracrine mediators of TGF-1 mRNA expression in cardiomyocytes. Therefore, we conclude that in stretched myocardium the cardiomyocytes, cardiac fibroblasts and endothelial cells take part in intercellular interactions contributing to cardiomyocyte hypertrophy.  相似文献   

19.
Activation of the insulin-like growth factor-1 receptor (IGF-1R) is known to play a role in cardiomyocyte hypertrophy. While IGF-2R is understood to be a clearance receptor for IGF-2, there is also evidence that it may play a role in the induction of pathological cardiomyocyte hypertrophy. It is not known whether IGF-2R activates cardiomyocyte hypertrophy during growth of the fetal heart. Fetal sheep hearts (125 ± 0.4 days gestation) were dissected, and the cardiomyocytes isolated from the left and right ventricles for culturing. Cultured cardiomyocytes were treated with either LONG R(3)IGF-1, an IGF-1R agonist; picropodophyllin, an IGF-1R autophosphorylation inhibitor; U0126, an inhibitor of extracellular signal-regulated protein kinase (ERK); Leu(27)IGF-2, an IGF-2R agonist; G?6976, a protein kinase C inhibitor; KN-93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII); or KN-92, an L-type calcium channel inhibitor and negative control for KN-93. The cross-sectional area of cultured cardiomyocytes was determined relative to control cardiomyocytes treated with serum-free culture medium. IGF-1R and IGF-2R activation each resulted in ERK signaling, but IGF-2R activation alone induced CaMKII signaling, resulting in hypertrophy of cardiomyocytes in the late gestation sheep fetus. These data suggest that changes in the intrauterine environment that result in increased cardiac IGF-2R may also lead to cardiomyocyte hypertrophy in the fetus and potentially an increased risk of cardiovascular disease in adult life.  相似文献   

20.
Neuregulin-1 (NRG-1), a cardioactive growth factor released from endothelial cells, has been shown to be indispensable for the normal function of the adult heart by binding to ErbB4 receptors on cardiomyocytes. In the present study, we have investigated to what extent ErbB2, the favored co-factor of ErbB4 for heterodimerization, participates in the cardiac effects of endothelium-derived NRG-1. In addition, in view of our previously described anti-adrenergic effects of NRG-1, we have studied which neurohormonal stimuli affect endothelial NRG-1 expression and release and how this may fit into a broader frame of cardiovascular physiology. Immunohistochemical staining of rat heart and aorta showed that NRG-1 expression was restricted to the endocardial endothelium and the cardiac microvascular endothelium (CMVE); by contrast, NRG-1 expression was absent in larger coronary arteries and veins and in aortic endothelium. In rat CMVE in culture, NRG-1 mRNA and protein expression was down-regulated by angiotensin II and phenylephrine and up-regulated by endothelin-1 and mechanical strain. CMVE-derived NRG-1 was shown to phosphorylate cardiomyocyte ErbB2, an event prevented by a 24-h preincubation of myocytes with monoclonal ErbB2 antibodies. Pretreating cardiomyocytes with these inhibitory anti-ErbB2 antibodies significantly attenuated CMVE-induced cardiomyocyte hypertrophy and abolished the protective actions of CMVE against cardiomyocyte apoptosis. Accordingly, ErbB2 signaling participated in the paracrine survival and growth controlling effects of NRG-1 on cardiomyocytes in vitro, explaining the cardiotoxicity of ErbB2 antibodies in patients. Cardiac NRG-1 synthesis occurs in endothelial cells adjacent to cardiac myocytes and is sensitive to factors related to the regulation of blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号