首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of (–)-isoproterenol on adenylate cyclase activity were studied in rat cerebral cortical membranes prepared and assayed in the presence of calcium ions. In assays carried out in the presence of high Mg2+ concentrations (5–10 mM) and of Ca2+ in the micromolar range, addition of 1–100 M (–)-isoproterenol caused over 50% inhibition of adenylate cyclase activity. Since these conditions are optimal for supporting endogenous phosphorylative activity in synaptic membranes, we tested whether the observed effects are mediated by changes in the phosphorylation of specific proteins in these membranes. This was done by preincubation of lysed synaptosomes under phosphorylating conditions in the presence and absence of isoproterenol followed by extensive washes and analysis of cyclic AMP formation in resuspended membranes. Addition of (–)-isoproterenol to the preincubation resulted in a 30% decrease of adenylate cyclase activity in the reincubation. Inclusion of [-32P]ATP in the preincubation and examination of the phosphorylation state of specific proteins in membranes entering the reincubation revealed that (–)-isoproterenol inhibited the phosphorylation of a specific protein band with apparent molecular weight of 47,000 (designated band F). These results support the hypothesis that alterations in membrane protein phosphorylation induced by neurotransmitters play a role in the regulation of adenylate cyclase activity.  相似文献   

2.
Extracellular application of oxytocin, Lys-vasopressin, and Leu-enkephalin to neuron RPa1 ofHelix pomatia evoked the generation of pacemaker potentials and the appearance of potentiation of spike activity of bursting type, characteristic of this cell. Noradrenalin and prostaglandins of the E group had a similar action. Dibutyryl-cyclic AMP, the phosphodiesterase inhibitor papaverine, and sodium fluoride, a nonspecific activator of adenylate cyclase, also initiated or potentiated bursting discharges of the neuron. It is suggested that the effects of oxytocin, Lys-vasopressin, Leu-enkephalin, noradrenalin, and prostaglandins of the E group are mediated through intracellular processes linked with activation of adenylate cyclase by these substances, leading to an increase in the cyclic AMP content in the nerve cell.P. K. Anokhin Research Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 80–87, January–February, 1981.  相似文献   

3.
Relationship of calmodulin and dopaminergic activity in the striatum   总被引:3,自引:0,他引:3  
Increasing evidence suggests a relationship between dopaminergic activity in the striatum and the content of calmodulin (CaM), an endogenous Ca2+-binding protein. The content of CaM in striatal membranes is increased by treatments that produce supersensitivity in striatal membranes is increased by treatments that produce supersensitivity of striatal dopaminergic receptors such as chronic neuroleptic treatment or injection of 6-hydroxydopamine. Concomitant with the increase in CaM is a greater sensitivity of adenylate cyclase to dopamine and an increase in Ca2+-sensitive phosphorylation in the striatal membranes. Procedures that result in dopaminergic subsensitivity, such as amphetamine treatment, increase the cytosolic content of CaM that can subsequently activate Ca2+ and CaM-dependent phosphodiesterase activity. In vitro studies have demonstrated that CaM and Ca2+ can stimulate basal adenylate cyclase activity in a striatal particulate fraction as well as increase the sensitivity of the enzyme to dopamine. Ca2+ and CaM most likely affect the dopamine-sensitive adenylate cyclase by interacting with guanyl nucleotides, which are required for dopamine sensitivity. It is concluded that a change in CaM concentration and/or location occurs during conditions of altered dopaminergic sensitivity in the striatum. These changes in CaM coupled with potential alterations in the Ca2+ concentration could modulate the sensitivity of the dopamine system and many CaM-dependent enzymes.  相似文献   

4.
Summary The sulphur-containing radioprotectors mercaptoethylamine (MEA), aminoethylisothiourea (AET), 2-aminothiazoline, 4-oxo-2-aminothiazoline, and S-S-3-oxapentane-1,5-diisothiourea, and the radioprotective biogenic amines serotonin, histamine, and dopamine, caused the elevation of cAMP content and intensified the rate of cAMP-dependent protein phosphorylation in tissues of animals following intraperitoneal injection at radioprotective doses. Biogenic amines stimulated the adenylate cyclase activity in membrane preparations from liver, spleen, and small-intestine mucosa; sulphur-containing radioprotectors caused no such effects. None of the radioprotectors affected cAMP and cGMP phosphodiesterases in vitro. AET and MEA inhibited guanylate cyclase in vitro, whereas serotonin and dopamine stimulated the enzyme. A biphasic change in the level of cGMP was observed in tissues after the administration of MEA and AET (more than 2-fold fall by 1–3 min after the administration of drug and 1.4-fold rise after 15–20 min); serotonin and dopamine caused a slow rise in the cGMP level; the cAMP/cGMP ratio in liver showed biphasic changes in level during the 20 min following injection of serotonin.The data obtained support the conclusion that the action of radioprotectors on cellular metabolism in animals may be mediated by the cAMP system. The reciprocal regulation of radioresistance by cAMP and cGMP is unlikely to exist.  相似文献   

5.
The adenylate cyclase present in membranes prepared from sea urchin eggs is sensitive to dopamine stimulation. The receptor sites coupled to sea urchin adenylate cyclase were characterized by means of specific agonists and antagonists. The D-1 dopamine agonist SKF-38393 was able to stimulate enzyme activity, while the two D-1 dopamine antagonists, SCH-23390 and SKF-83566, suppressed the stimulatory effect of dopamine. In addition, the D-2 dopamine agonists, PPHT and metergoline, brought about a dose-dependent inhibition of dopamine-stimulated adenylate cyclase activity. These data show that: (i) in sea urchin eggs adenylate cyclase is regulated by dopamine receptors; (ii) these receptors share characteristics with D-1 and D-2 dopamine receptors present in the mammalian brain.  相似文献   

6.
In an analysis of the postsynaptic mechanism of heterosynaptic facilitation, changes in the amplitude of the excitatory postsynaptic current (EPSC) and the current evoked by application of acetylcholine (ACh current), acting on the adenylate cyclase system of the LC-1 and RC-1 neurons of the molluskPlanorbis corneus, were compared. Both responses are n-cholinergic and depend on the membrane conductivity for Na+ and K+. Application of serotonin led to a 100–300% increase in the amplitude of the EPSC and (in most cases) the ACh current. However, in 30% of the cases, the increase in the EPSC was accompanied by a decrease in the ACh current. This is probably due to the different contributions of Na+ and K+ to the mechanism of activation of the conductivity of th channel-receptor complex of the nonsynaptic cell membrane. The influence of serotonin on the EPSC and ACh current was simulated by the action of phosphodiesterase blockers and adenylate cyclase activators. Phosphodiesterase activators and protein kinase blockers reversibly inhibited the EPSC and ACh current. Thus, activation of the adenylate cyclase system, mediated by the action of serotonin, promotes the development of a postsynaptic mechanism of formation of heterosynaptic facilitation of the EPSC in the command neurons of the mollusk.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 676–683, November–December, 1991.  相似文献   

7.
Treatment of bovine thyroid plasma membranes with phospholipase A or C inhibited the stimulation of adenylate cyclase activity by thyroid-stimulating hormone (TSH). In general, basal and NaF-stimulated adenylate cyclase activity was not influenced by such treatment. When plasma membranes were incubated with 1–2 units/ml phospholipase A, subsequent addition of phosphatidylcholine or phosphatidylserine but not phosphatidylethanolamine partially restored TSH stimulation. Phosphatidylcholine was more effective than phosphatidylserine in that it caused greater restoration of the TSH response and smaller amounts of phosphatidylcholine were active. However, when the TSH effect was obliterated by treatment of plasma membranes with 10 units/ml phospholipase A, phospholipids were unable to restore any response to TSH. Lubrol PX, a nonionic detergent, inhibited basal, TSH- and NaF-stimulated adenylate cyclase activities in thyroid plasma membranes. Although phosphatidylcholine partially restored TSH stimulation of adenylate cyclase activity in the presence of Lubrol PX, it did not have a similar effect on the stimulation induced by NaF. These results indicate that phospholipids are probably essential components in the system by which TSH stimulates adenylate cyclase activity in thyroid plasma membranes. The effects do not seem to involve the catalytic activity of adenylate cyclase but the data do not permit a distinction between decreased binding of TSH to its receptor or impairment of the signal from the bound hormone to the enzyme activity.  相似文献   

8.
Summary The effects of purified Ca2+, phospholipid-dependent protein kinase (C-kinase) were studied on adenylate cyclase activity from rat brain striatum. C-kinase treatment of the membranes stimulated adenylate cyclase activity, the maximal stimulation between 50–80% was observed at 3.5 U/ml, whereas the catalytic subunit of cAMP dependent protein kinase did not show any effect on enzyme activity. The inclusion of Ca2+ and phosphatidyl serine did not augment the percent stimulation of adenylate cyclase by C-kinase, however EGTA inhibited the stimulatory effect of C-kinase on enzyme activity. Furthermore, the known inhibitors of C-kinase such as polymyxin-B and 1-(5-Isoquinoline sulfonyl)-2-methylpiperazine dihydrochloride (H-7) also inhibited the stimulatory effect of C-kinase on adenylate cyclase activity. In addition, in the presence of GTP the stimulatory effects of C-kinase on basal and N-Ethylcarboxamide adenosine- (NECA-), dopamine-(DA) and forskolin- (FSK) sensitive adenylate cyclase activities were augmented. On the other hand, the inhibitory effect of high concentrations of GTP on enzyme activity was attenuated by C-kinase treatment. In addition, oxotremorine inhibited adenylate cyclase activity in a concentration dependent manner, with an apparent Ki of about 10 µM and C-kinase treatment almost completely abolished this inhibition. These data suggest that C-kinase may play an important role in the regulation of adenylate cyclase activity possibly by interacting with a guanine nucleotide regulatory protein.Abbreviations C-kinase Ca2– phospholipid-dependent protein kinase - NECA N-Ethylcarboxamide adenosine - DA Dopamine - FSK Forskolin - PMA Phorbol 12-(-Myristate), 13-Acetate, H-7, 1-(5-isoquinoline sulfonyl)-2-methylpiperazine dihydrochloride Presented in part at the VIth International Conference on Cyclic nucleotides, calcium and protein phosphorylation signal transduction in biological systems. September 2-6, 1986, Bethesda, MD (USA).M.B.A.-S. was Canadian Heart Foundation Scholar during the course of these studies.  相似文献   

9.
The effect of vasopressin on adenylate cyclase activity was measured in the homogenates of selected rat brain regions. Adenylate cyclase activity in homogenate of the caudate nucleus did not change significantly with various concentrations of vasopressin. Furthermore, vasopressin did not reliably alter adenylate cyclase activity in various brain regions. Vasopressin in low concentrations significantly enhanced the activation of caudate adenylate cyclase activity by dopamine. This effect of vasopressin was dose dependent. Maximal enhancement by vasopressin occurred at 100 microM vasopressin. These results indicate that vasopressin may not have a direct effect on brain adenylate cyclase activity but appears to modulate the action of dopamine on brain adenylate cyclase.  相似文献   

10.
K.B. Seamon  J.W. Daly 《Life sciences》1982,30(17):1457-1464
Calcium stimulates adenylate cyclase activity in rat cerebral cortical membranes with either ATP or AppNHp as substrate. In contrast, isoproterenol stimulates the cerebral cortical enzyme with ATP as substrate but not with AppNHp as substrate unless exogenous GTP is added. In rat striatal membranes, calcium or dopamine stimulate adenylate cyclase activity with ATP as substrate, but not with AppNHp as substrate. GTP restores the dopamine but not the calcium response. The inhibitory guanine nucleotide GDP-βS antagonizes dopamine and GppNHp stimulation of the brain adenylate cyclases, but not stimulation by calcium of either rat cerebral cortical or striatal enzymes. Results indicate that GTP is not requisite to calcium-calmodulin activation of adenylate cyclases in brain membranes. In addition, calcium-calmodulin cannot activate striatal adenylate cyclases with a nonphosphorylating nucleotide, AppNHp, as substrate.  相似文献   

11.
Activation of adipocyte adenylate cyclase by protein kinase C   总被引:5,自引:0,他引:5  
Adenylate cyclase activity in purified rat adipocyte membranes is stimulated by the calcium- and phospholipid-dependent enzyme protein kinase C. Over the concentration range of 100-1000 milliunits/ml, both highly purified (approximately 3000 units/mg of protein) protein kinase C from rat brain and partially purified (14 units/mg of protein) protein kinase C from guinea pig pancreas stimulate cyclase activity. The actions of both protein kinase C preparations on adenylate cyclase activity are dependent on added calcium, which is effective at concentrations less than 10 microM. Exogenous phospholipids are not required for stimulation of adenylate cyclase by protein kinase C; but, under typical cyclase assay conditions, the adipocyte membranes satisfy the lipid requirement for protein kinase C phosphorylation of histone. The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate enhances the kinase action on cyclase, and the phorbol ester is effective at concentrations equimolar with the kinase (less than 10 nM). With the brain protein kinase C, 12-O-tetradecanoylphorbol-13-acetate effects are especially evident at limiting calcium concentrations. Inhibitors of protein kinase C activity, such as chlorpromazine, palmitoylcarnitine, and polymyxin B, inhibit selectively that adenylate cyclase activity which is stimulated by protein kinase C plus calcium. It is concluded that protein kinase C acts directly on the adipocyte adenylate cyclase system.  相似文献   

12.
Desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocytes results in a 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of beta-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoprenaline- and dibutyryl cyclic AMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37 degrees C, pH 8.0. In both preparations alkaline phosphatase treatment significantly decreased desensitization of agonist-stimulated adenylate cyclase activity by 40-75% (P less than 0.05). Similar results were obtained after alkaline phosphatase treatment of membranes from isoprenaline- and dibutyryl cyclic AMP-desensitized duck erythrocytes. Moreover, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with 12-O-tetradecanoylphorbol 13-acetate returned agonist-stimulated adenylate cyclase activity to near control values. In all experiments, inclusion of 20 mM-sodium phosphate to inhibit alkaline phosphatase during treatment of membranes attenuated the enzyme's effect on agonist-stimulated adenylate cyclase activity. In addition, alkaline phosphatase treatment of membranes from control and isoprenaline-desensitized turkey erythrocytes increased the mobility of beta-adrenergic-receptor proteins, specifically photoaffinity-labelled with [125I]iodocyanopindolol-diazirine, on SDS/polyacrylamide-gel electrophoresis. The increased mobility of the beta-adrenergic-receptor proteins after alkaline phosphatase treatment of membranes was again inhibited by 20 mM-phosphate. These results provide additional evidence for a direct role for phosphorylation in desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocytes.  相似文献   

13.
Extracellular cAMP induces the activation of adenylate cyclase in Dictyostelium discoideum cells. Conditions for both stimulation and inhibition of adenylate cyclase by guanine nucleotides in membranes are reported. Stimulation and inhibition were induced by GTP and non-hydrolysable guanosine triphosphates. GDP and non-hydrolysable guanosine diphosphates were antagonists. Stimulation was maximally twofold, required a cytosolic factor and was observed only at temperatures below 10 degrees C. An agonist of the cAMP-receptor-activated basal and GTP-stimulated adenylate cyclase 1.3-fold. Adenylate cyclase in mutant N7 could not be activated by cAMP in vivo; in vitro adenylate cyclase was activated by guanine nucleotides in the presence of the cytosolic factor of wild-type but of not mutant cells. Preincubation of membranes under phosphorylation conditions has been shown to alter the interaction between cAMP receptor and G protein [Van Haastert (1986) J. Biol. Chem. in the press]. These phosphorylation conditions converted stimulation to inhibition of adenylate cyclase by guanine nucleotides. Inhibition was maximally 30% and was not affected by the cytosolic factor involved in stimulation. In membranes obtained from cells that were treated with pertussis toxin, adenylate cyclase stimulation by guanine nucleotides was as in control cells, whereas inhibition by guanine nucleotides was lost. When cells were desensitized by exposure to cAMP agonists for 15 min, and adenylate cyclase was measured in isolated membranes, stimulation by guanine nucleotides was lost while inhibition was retained. These results suggest that Dictyostelium discoideum adenylate cyclase may be regulated by Gs-like and Gi-like activities, and that the action of Gs but not Gi is lost during desensitization in vivo and by phosphorylation conditions in vitro.  相似文献   

14.
The enterotoxin from Vibrio cholerae is a protein of 100,000 mol wt which stimulates adenylate cyclase activity ubiquitously. The binding of biologically active 125I-labeled choleragen to cell membranes is of extraordinary affinity and specificity. The binding may be restricted to membrane-bound ganglioside GMI. This ganglioside can be inserted into membranes from exogenous sources, and the increased toxin binding in such cells can be reflected by an increased sensitivity to the biological effects of the toxin. Features of the toxin-activated adenylate cyclase, including conversion of the enzyme to a GTP-sensitive state, and the increased sensitivity of activation by hormones, suggest analogies between the basic mechanism of action of choleragen and the events following binding of hormones to their receptors. The action of the toxin is probably not mediated through intermediary cytoplasmic events, suggesting that its effects are entirely due to processes involving the plasma membrane. The kinetics of activation of adenylate cyclase in erythrocytes from various species as well as in rat adipocytes suggest a direct interaction between toxin and the cyclase enzyme which is difficult to reconcile with catalytic mechanisms of adenylate cyclase activation. Direct evidence for this can be obtained from the comigration of toxin radioactivity with adenylate cyclase activity when toxin-activated membranes are dissolved in detergents and chromatographed on gel filtration columns. Agarose derivatives containing the “active” subunit of the toxin can specifically adsorb adenylate cyclase activity, and specific antibodies against the choleragen can be used for selective immunoprecipitation of adenylate cyclase activity from detergentsolubilized preparations of activated membranes. It is proposed that toxin action involves the initial formation of an inactive toxin-ganglioside complex which subsequently migrates and is somehow transformed into an active species which involves relocation within the two-dimensional structure of the membrane with direct pertubation of adenylate cyclase molecules (virtually irreversibly). These studies suggest new insights into the normal mechanisms by which hormone receptors modify membrane functions.  相似文献   

15.
Chlorpromazine, haloperidol and clozapine are approximately equipotent in antagonizing dopamine sensitive adenylate cyclase activity in homogenates of rat brain striatum, in contrast to the differences in clinical antipsychotic potencies reported by others. The antagonism appeared to occur at a structurally specific dopamine site, as inhibition by a series of chlorpromazine analogues of similar hydrophobicity exhibited a structural specificity similar to that found for their neuroleptic and cataleptic activities. Sulpiride, a dopamine antagonist with antipsychotic activity, and metoclopramide, a structurally related central dopamine antagonist, failed to inhibit the dopamine sensitive adenylate cyclase. Pre-treatment of rats with haloperidol (3 mg/kg per day) for 6 or 28 days did not induce a supersensitive response of the adenylate cyclase to stimulation by dopamine or apomorphine or inhibition by clozapine. It was concluded that the dopamine sensitive adenylate cyclase may not be the site of action of all anti-psychotic agents.  相似文献   

16.
Effects of pertussis toxin (PT) treatment on atrial natriuretic peptide (ANP)-mediated inhibition of adenylate cyclase and amylase release were investigated in rat parotid gland. Adenylate cyclase activity stimulated by GTPS in PT-treated membranes was much larger than that in normal membranes. ANP dose-dependently inhibited adenylate cyclase stimulated by GTPS in control rat parotid membranes, however in membranes prepared from PT-injected (in vivo) rat parotid gland, ANP did not inhibit adenylate cyclase. ANP(10–7M) inhibited cAMP accumulation stimulated by forskolin (10–6M) in control rat parotid acinar cells by about 34%, however, in PT-treated cells, the inhibitory effect of ANP was attenuated completely. In control cells, amylase release stimulated by isoproterenol (10–6M) and forskolin (10–6M) were also depressed by ANP (10–7M) by 27 and 30%, respectively. The inhibitory response of ANP on amylase release was completely attenuated by PT-treatment. Gi was detected as a ADP-ribosylated 41-KDa protein by incubation of parotid membranes with PT and [-32P]NAD. In rat parotid gland, these results suggested that ANP mediates adenylate cyclase/cAMP system and consequently reduces amylase release through ANP-C receptor coupled to Gi. (Mol Cell Biochem)139: 53–58, 1994)  相似文献   

17.
Abstract: Neural retina from most species contains 3,4-dihydroxyphenylethylamine (dopamine) receptors coupled to stimulation of adenylate cyclase activity. It has been demonstrated that release of dopamine from its neurons and subsequent occupation of dopamine receptors is increased by light. In this study, we have shown that adenylate cyclase activity in bovine retina is highly responsive to the endogenous Ca2+-binding protein, cal-modulin, and that calmodulin can increase dopamine-sen-sitive adenylate cyclase activity in bovine retina. We further demonstrate that both dopamine- and calmodulin-stimulated adenylate cyclase activities can be regulated by alterations in light. Bovine retinas were dissected from the eye under a low-intensity red safety light, defined as dark conditions, and incubated for 20 min in an oxygenated Krebs Henseleit buffer under either dark or light conditions. The retinas were then homogenized and adenylate cyclase activity measured in a paniculate fraction washed to deplete it of endogenous Ca2+ and calmodulin. Activation of adenylate cyclase activity by calmodulin, dopamine, and the nonhydrolyzable GTP analog, gua-nosine-5′-(β,γ-imido)triphosphate (GppNHp), was significantly (60%) greater in paniculate fractions from retinas that had been incubated under dark conditions as compared to those incubated under light conditions. Basal, Mn2+-, and GTP-stimulated adenylate cyclase activities were not altered by changes in lighting conditions. Calmodulin could increase the maximum stimulation of adenylate cyclase by dopamine in retinas incubated under either dark or light conditions, but the degree of its effect was greater in retinas incubated under light conditions. Activation of adenylate cyclase by calmodulin, dopamine, and GppNHp in paniculate fractions from retinas incubated under light conditions was indistinguishable from the activation obtained when retinas were incubated in the dark in the presence of exogenous dopamine. These results suggest that an increased release of dopamine occurs in light. The decreased response of adenylate cyclase to exogenous dopamine can then be explained by a subsequent down-regulation of dopamine receptor activity. The down-regulation of dopamine receptor activity can also regulate activation of adenylate cyclase by GppNHp and calmodulin. The results suggest that dopamine, calmodulin, and GppNHp are modulators of a common component of adenylate cyclase activity, and this component is regulated by light.  相似文献   

18.
1. Inhibition of octopamine-stimulated adenylate cyclase was studied in the optic lobe of Octopus vulgaris.2. The octopamine antagonist, mianserin, and the dopamine D2 agonists, PPHT and metergoline, induced dose-dependent inhibition of octopamine-stimulated adenylate cyclase activity.3. The binding of the tritiated benzazepine neuroleptic YM-09151-2 to octopus membranes and the displacement of [3H]YM-09151-2 by PPHT, metergoline and spiperone were consistent with the presence of a D2-like dopamine receptor in the octopus optic lobe.4. The conclusion is drawn that octopamine-stimulated adenylate cyclase in the octopus is negatively regulated by a dopamine D2-like receptor.  相似文献   

19.
A vasoactive intestinal peptide-sensitive adenylate cyclase in intestinal epithelial cell membranes was characterized. Stimulation of adenylate cyclase activity was a function of vasoactive intestinal peptide concentration over a range of 1 · 10−10−1 · 10−7 M and was increased six-times by a maximally stimulating concentration of vasoactive intestinal peptide. Half-maximal stimulation was observed with 4.1 ± 0.7 nM vasoactive intestinal peptide. Fluoride ion stimulated adenylate cyclase activity to a higher extent than did vasoactive intestinal peptide. Under standard assay conditions, basal, vasoactive inteetinal peptide- and fluoride-stimulated adenylate cyclase activities were proportional to time of incubation up to 15 min and to membrane concentration up to 60 μg protein per assay. The vasoactive intestinal peptide-sensitive enzyme required 5–10 mM Mg2+ and was inhibited by 1 · 10−5 M Ca2+. At sufficiently high concentrations, both ATP (3 mM) and Mg2+ (40 mM) inhibited the enzyme.Secretin also stimulated the adenylate cyclase activity from intestinal epithelial cell membranes but its effectiveness was 1/1000 that of vasoactive intestinal peptide. Prostaglandins E1 and E2 at 1 · 10−5 M induced a two-fold increase of cyclic AMP production. Vasoactive intestinal peptide was the most potent stimulator of adenylate cyclase activity, suggesting an important physiological role of this peptide in the cyclic AMP-dependent regulation of the intestinal epithelial cell function.  相似文献   

20.
The action of phospholipase A2 and alpha-tocopherol on adenylate cyclase system functioning and on the lipid bilayer microviscosity of the rat brain synaptosome membranes was investigated. It was shown that the exposure of the synaptosomes to phospholipase A2 increases the adenylate cyclase activity stimulated by guanylyl imidotriphosphate (GITP), decreases the adenylate cyclase activity stimulated both by isoproterenol and by isoproterenol with GITP. The preincubation of synaptosomes in medium containing alpha-tocopherol does not change the character of the phospholipase action on the adenylate cyclase activity stimulated by isoproterenol but normalizes the adenylate cyclase activity stimulated both by GITP and by GITP with isoproterenol. In the last case the normalizing action of alpha-tocopherol is not caused by alteration of the microviscosity of the lipid bilayer. It appears to be due to the modification of the lipid-protein interactions of annular lipids with activated complex of catalytic subunit and guanyl nucleotide-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号