首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of nitric oxide production by lactobacilli   总被引:4,自引:0,他引:4  
Six strains of Lactobacillus fermentum and Lactobacillus plantarum were investigated for nitric oxide (NO) production. First, the potential presence of NO synthase was examined. None of the strains of L. fermentum and L. plantarum examined produced NO from L-arginine under aerobic conditions. Interestingly, all L. fermentum strains expressed strong L-arginine deiminase activity. All L. fermentum strains produced NO in MRS broth, but the NO was found to be chemically derived from nitrite, which was produced by L. fermentum from nitrate present in the medium. Indeed all L. fermentum strains express nitrate reductase under anaerobic conditions. Moreover, one strain, L. fermentum LF1, had nitrate reductase activity under aerobic conditions. It was also found that L. fermentum strains JCM1173 and LF1 possessed ammonifying nitrite reductase. The latter strain also had denitrifying nitrite reductase activity at neutral pH under both anaerobic and aerobic conditions. The LF1 strain is thus capable of biochemically converting nitrate to NO. NO and nitrite produced from nitrate by lactobacilli may constitute a potential antimicrobial mechanism. studied in a rat acute liver injury model (Adawi et al. 1997). The results indicate that Lactobacillus plantarum DSM 9842 may possess NOS (Adawi et al. 1997). However, NO production from L-arginine has not been investigated in pure cultures of L. plantarum. According to the results of a 15N enrichment experiment, traces of (NO2-+NO3-)-N (total oxidised nitrogen: TON), which seemed to be formed by the resting cells of Lactobacillus fermentum IFO3956, appeared to be derived from L-arginine (Morita et al. 1997). Therefore, it was suggested that L. fermentum may possess a NOS. However, NO produced from L-arginine was not directly measured and a NOS inhibitor test was not performed by Morita et al. (1997). It is known that L-arginine deiminase (ADI) in bacteria may convert L-arginine to NH4+ (Cunin et al. 1986), which may be further oxidised to TON via nitrification by bacteria. Therefore, 15N enrichment experiments could not definitely conclude that L. fermentum possess NOS to convert L-arginine directly to NO. In this study, six Lactobacillus strains belonging to L. plantarum and L. fermentum were measured for NO production in MRS broth. The metabolism of nitrate and L-arginine by the Lactobacillus cell suspensions was also studied. The possibility that NO and nitrite production by lactobacilli may be a potential probiotic trait is also discussed.  相似文献   

2.
In aqueous methyl linoleate emulsions (pH 7.4, 25 °C, air-saturated), nitrosylmyoglobin and saturated fatty acid anions (palmitate and stearate investigated) each showed antioxidant effect on metmyoglobin-induced peroxidation as measured by oxygen depletion rate. For equimolar concentration of nitrosylmyoglobin and metmyoglobin and for metmyoglobin in moderate excess, a reduction in oxygen consumption rate of ∼70% was observed. Fatty acid anions reduced oxygen consumption rate most significantly for palmitate (up to 60% for a fatty acid:heme protein ratio of 90:1). No further antioxidative effect was seen for fatty acid anions in the presence of nitrosylmyoglobin, whereas nitrosylmyoglobin showed a further antioxidant effect in presence of fatty acid anions in the metmyoglobin-catalyzed process. The antioxidative mechanism of nitrosylmyoglobin and fatty acid anions is different, and while the fatty acid anions seem active in inhibiting initiation of oxidation through protection against metmyoglobin activation into perferrylmyoglobin, as shown by freeze-quench Electron Spin Resonance (ESR) spectroscopy, nitrosylmyoglobin is rather active in the oxygen consuming (propagation) phase.  相似文献   

3.
In aqueous methyl linoleate emulsions (pH 7.4, 25 degrees C, air-saturated), nitrosylmyoglobin and saturated fatty acid anions (palmitate and stearate investigated) each showed antioxidant effect on metmyoglobin-induced peroxidation as measured by oxygen depletion rate. For equimolar concentration of nitrosylmyoglobin and metmyoglobin and for metmyoglobin in moderate excess, a reduction in oxygen consumption rate of approximately 70% was observed. Fatty acid anions reduced oxygen consumption rate most significantly for palmitate (up to 60% for a fatty acid:heme protein ratio of 90:1). No further antioxidative effect was seen for fatty acid anions in the presence of nitrosylmyoglobin, whereas nitrosylmyoglobin showed a further antioxidant effect in presence of fatty acid anions in the metmyoglobin-catalyzed process. The antioxidative mechanism of nitrosylmyoglobin and fatty acid anions is different, and while the fatty acid anions seem active in inhibiting initiation of oxidation through protection against metmyoglobin activation into perferrylmyoglobin, as shown by freeze-quench Electron Spin Resonance (ESR) spectroscopy, nitrosylmyoglobin is rather active in the oxygen consuming (propagation) phase.  相似文献   

4.
Administration of Fe(2+)-citrate complex (50 mg/kg of FeSO4 or FeCl2 plus 250 mg/kg of sodium citrate) subcutaneously in the thigh or Escherichia coli lipopolysaccharide (LPS, 1 mg/kg) intraperitoneally, (i.p.) to mice induced NO formation in the livers in vivo at the rate of 0.2-0.3 micrograms/g wet tissue per 0.5 h. The NO synthesized was specifically trapped with Fe(2+)-diethyldithiocarbamate complex (FeDETC2), formed from endogenous iron and diethyldithiocarbamate (DETC) administered i.p. 0.5 h before decapitation of the animals. NO bound with this trap resulted in the formation of a paramagnetic mononitrosyl iron complex with DETC (NO-FeDETC2), characterized by an EPR signal at g perpendicular = 2.035, g parallel = 2.02 with triplet hyperfine structure (HFS) at g perpendicular. This allowed quantification of the amount of NO formed in the livers. An inhibitor of enzymatic NO synthesis from L-arginine, NG-nitro-L-arginine (NNLA, 50 mg/kg) attenuated the NO synthesis in vivo. L-Arginine (500 mg/kg) reversed this effect. Injection of L-[guanidineimino-15N2]arginine combined with Fe(2+)-citrate or LPS led to the formation of the EPR signal of NO-FeDETC2 characterized by a doublet HFS at g perpendicular, demonstrating that the NO originates from the guanidino nitrogens of L-arginine in vivo.  相似文献   

5.
The formation of nitric oxide (NO) from L-arginine by vascular endothelial cells and its relationship to endothelium-dependent relaxation of vascular rings was studied. The release of NO, measured by bioassay or chemiluminescence, from porcine aortic endothelial cells stimulated with bradykinin was enhanced by infusions of L-, but not D-arginine. The release of 15NO, determined by high resolution mass spectrometry, from L-guanidino 15N (99%) arginine was also observed, indicating that NO is formed from the terminal guanidino nitrogen atom(s) of L-arginine. L-NG-monomethyl arginine (L-NMMA), but not D-NMMA, inhibited both the generation of NO by endothelial cells in culture and the endothelium-dependent relaxation of rabbit aortic rings. Both these effects were reversed by L-arginine. These data indicate that L-arginine is the physiological precursor for the formation of NO which mediates endothelium-dependent relaxation.  相似文献   

6.
Nitric oxide (NO) is synthesized by a number of cells from a guanidino nitrogen atom of L-arginine by the action of either constitutive or inducible NO synthases, both of which form citrulline as a co-product. We have determined the source of the oxygen in both NO and in citrulline formed by the constitutive NO synthase from the vascular endothelium and brain and by the inducible NO synthase from the murine macrophage cell line J774. All these enzymes incorporate molecular oxygen both into NO and into citrulline. Furthermore, activated J774 cells form NO from omega-hydroxyl-L-arginine, confirming the proposal that this compound is an intermediate in the biosynthesis of NO.  相似文献   

7.
Li H  Raman CS  Martásek P  Masters BS  Poulos TL 《Biochemistry》2001,40(18):5399-5406
The crystal structure of the endothelial nitric oxide synthase (NOS) heme domain complexed with NO reveals close hydrogen bonding interactions between NO and the terminal guanidino nitrogen of the substrate, L-arginine. Dioxygen is expected to bind in a similar mode which will facilitate proton abstraction from L-Arg to dioxygen, a required step for O-O bond cleavage. Structures of mechanism-based NOS inhibitors, N(5)-(1-iminoethyl)-L-ornithine and N-(3-(aminomethyl)benzyl)acetamidine, provide clues on how this class of compounds operate as suicide substrate inhibitors leading to heme oxidation.  相似文献   

8.
We have studied receptor-mediated generation of an activator of soluble guanylate cyclase in cultured mouse neuroblastoma cells (clone N1E-115) by ESR/spin trapping spectroscopy. A spin adduct was detected during the activation of muscarinic receptors by carbamylcholine in the presence of the spin trap 3,5-dibromo 4-nitrosobenzene sulphonate (DBNBS). The spin adduct does not correspond to that originating from the free radical nitric oxide or hydroxylamine. The same adduct was generated in cytosol preparations from N1E-115 cells incubated with L-arginine, NADPH, in the presence of calcium. The use of isotopically labelled guanidino-N15-L-arginine supported the generation of a DBNBS spin trapped adduct originating from the guanidino moiety of L-arginine. Superoxide dismutase (SOD) stabilized the precursor of the spin adduct as well as the activator of soluble guanylate cyclase derived from L-arginine. Our results provide direct evidence for the receptor-mediated formation of a diffusible precursor of NO. derived from L-arginine.  相似文献   

9.
Previous studies have shown that murine macrophages immunostimulated with interferon gamma and Escherichia coli lipopolysaccharide synthesize NO2-, NO3-, and citrulline from L-arginine by oxidation of one of the two chemically equivalent guanido nitrogens. The enzymatic activity for this very unusual reaction was found in the 100,000g supernatant isolated from activated RAW 264.7 cells and was totally absent in unstimulated cells. This activity requires NADPH and L-arginine and is enhanced by Mg2+. When the subcellular fraction containing the enzyme activity was incubated with L-arginine, NADPH, and Mg2+, the formation of nitric oxide was observed. Nitric oxide formation was dependent on the presence of L-arginine and NADPH and was inhibited by the NO2-/NO3- synthesis inhibitor NG-monomethyl-L-arginine. Furthermore, when incubated with L-[guanido-15N2]arginine, the nitric oxide was 15N-labeled. The results show that nitric oxide is an intermediate in the L-arginine to NO2-, NO3-, and citrulline pathway. L-Arginine is required for the activation of macrophages to the bactericidal/tumoricidal state and suggests that nitric oxide is serving as an intracellular signal for this activation process in a manner similar to that very recently observed in endothelial cells, where nitric oxide leads to vascular smooth muscle relaxation [Palmer, R. M. J., Ashton, D. S., & Moncada, S. (1988) Nature (London) 333, 664-666].  相似文献   

10.
Lactobacillus reuteri is a heterofermentative lactic acid bacterium that naturally inhabits the gut of humans and other animals. The probiotic effects of L. reuteri have been proposed to be largely associated with the production of the broad-spectrum antimicrobial compound reuterin during anaerobic metabolism of glycerol. We determined the complete genome sequences of the reuterin-producing L. reuteri JCM 1112(T) and its closely related species Lactobacillus fermentum IFO 3956. Both are in the same phylogenetic group within the genus Lactobacillus. Comparative genome analysis revealed that L. reuteri JCM 1112(T) has a unique cluster of 58 genes for the biosynthesis of reuterin and cobalamin (vitamin B(12)). The 58-gene cluster has a lower GC content and is apparently inserted into the conserved region, suggesting that the cluster represents a genomic island acquired from an anomalous source. Two-dimensional nuclear magnetic resonance (2D-NMR) with (13)C(3)-glycerol demonstrated that L. reuteri JCM 1112(T) could convert glycerol to reuterin in vivo, substantiating the potential of L. reuteri JCM 1112(T) to produce reuterin in the intestine. Given that glycerol is shown to be naturally present in feces, the acquired ability to produce reuterin and cobalamin is an adaptive evolutionary response that likely contributes to the probiotic properties of L. reuteri.  相似文献   

11.
Electron nuclear double resonance (ENDOR) signals have been obtained from iron-linked nitrogens in frozen solutions of cytochrome c, metmyoglobin cyanide, and a low spin protohemin mercaptide complex. Hyperfine couplings from heme protons have also been obtained from metmyoglobin cyanide and from a low spin protohemin cyanide complex. Several of these proton resonances are assigned to specific heme protons.  相似文献   

12.
Recently, we used 35 GHz pulsed 15N ENDOR spectroscopy to determine the position of the reactive guanidino nitrogen of substrate L-arginine relative to the high-spin ferriheme iron of holo-neuronal nitric oxide synthase (nNOS) [Tierney, D. L., et al. (1998) J. Am. Chem. Soc. 120, 2983-2984]. Analogous studies of the enzyme-bound reaction intermediate, NG-hydroxy-L-arginine (NOHA), singly labeled with 15N at the hydroxylated nitrogen (denoted NR), show that NR is held 3.8 A from the Fe, closer than the corresponding guanidino N of L-Arg (4.05 A). 1,2H ENDOR of NOHA bound to holo-nNOS in H2O and D2O discloses the presence of a single resolved exchangeable proton (H1) 4.8 A from Fe and very near the heme normal. The ENDOR data indicate that NOHA does not bind as the resonance-stabilized cation in which the terminal nitrogens share a positive charge. ENDOR-determined structural constraints permit two alternate structural models for the interaction of NOHA with the high-spin heme iron. In one model, H1 is assigned to the O-H proton; in the other, it is the NR-H proton. However, the alternatives differ in the placement of the N-O bond relative to the heme iron. Thus, a combination of the ENDOR data with appropriate diffraction studies can achieve a definitive determination of the protonation state of NR and thus of the tautomeric form that is present in the enzyme-NOHA complex. The mechanistic implications of this result are further discussed.  相似文献   

13.
Cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19) is produced mainly by Bacillus strains. CGTase from Bacillus macerans IFO3490 produces alpha-cyclodextrin as the major hydrolysis product from starch, whereas thermostable CGTase from Bacillus stearothermophilus NO2 produces alpha- and beta-cyclodextrins. To analyze the cyclization characteristics of CGTase, we cloned different types of CGTase genes and constructed chimeric genes. CGTase genes from these two strains were cloned in Bacillus subtilis NA-1 by using pTB523 as a vector plasmid, and their nucleotide sequences were determined. Three CGTase genes (cgt-1, cgt-5, and cgt-232) were isolated from B. stearothermophilus NO2. Nucleotide sequence analysis revealed that the three CGTase genes have different nucleotide sequences encoding the same amino acid sequence. Base substitutions were found at the third letter of five codons among the three genes. Each open reading frame was composed of 2,133 bases, encoding 711 amino acids containing 31 amino acids as a signal sequence. The molecular weight of the mature enzyme was estimated to be 75,374. The CGTase gene (cgtM) of B. macerans IFO3490 was composed of 2,142 bases, encoding 714 amino acids containing 27 residues as a signal sequence. The molecular weight of the mature enzyme was estimated to be 74,008. The sequence determined in this work was quite different from that reported previously by other workers. From data on the three-dimensional structure of a CGTase, seven kinds of chimeric CGTase genes were constructed by using cgt-1 from B. stearothermophilus NO2 and cgtM from B. macerans IFO3490. We examined the characteristics of these chimeric enzymes on cyclodextrin production and thermostability. It was found that the cyclization reaction was conferred by the NH2-terminal region of CGTase and that the thermostability of some chimeric enzymes was lower than that of the parental CGTases.  相似文献   

14.
Recent studies show the importance of a single amino acid, L-arginine, as a necessary substrate for activated macrophage-mediated cytotoxic activity for tumor target cells and microbiostatic function for Cryptococcus neoformans. The present studies were carried out to determine the role of the L-arginine-dependent macrophage effector function on the microbiostatic effects of activated macrophages on the obligate intracellular protozoan, Toxoplasma gondii. A guanidino methylated derivative of L-arginine, NGmonomethyl-L-arginine (NGMMA), a competitive inhibitor of the L-arginine-dependent effector pathway, virtually abolished the normally potent microbiostatic effect of macrophages for Toxoplasma gondii after activation of the macrophages in vitro by IFN-gamma and LPS or in vivo by i.p. injection of killed Corynebacterium parvum. Addition of supplemental L-arginine to the culture medium overcame the capacity of NGMMA to block activated macrophage-mediated microbiostasis of Toxoplasma. The ability of NGMMA to inhibit the microbiostatic capacity of activated macrophages for Toxoplasma gondii correlated with almost total inhibition of synthesis of nitrite, nitrate, and L-citrulline from L-arginine. Therefore, as is the case for tumor target cells and C. neoformans, the synthesis of inorganic nitrogen oxides from a terminal guanidino nitrogen atom of L-arginine appears to be essential for murine cytotoxic activated macrophage mediated microbiostatic capacity for T. gondii.  相似文献   

15.
Cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19) is produced mainly by Bacillus strains. CGTase from Bacillus macerans IFO3490 produces alpha-cyclodextrin as the major hydrolysis product from starch, whereas thermostable CGTase from Bacillus stearothermophilus NO2 produces alpha- and beta-cyclodextrins. To analyze the cyclization characteristics of CGTase, we cloned different types of CGTase genes and constructed chimeric genes. CGTase genes from these two strains were cloned in Bacillus subtilis NA-1 by using pTB523 as a vector plasmid, and their nucleotide sequences were determined. Three CGTase genes (cgt-1, cgt-5, and cgt-232) were isolated from B. stearothermophilus NO2. Nucleotide sequence analysis revealed that the three CGTase genes have different nucleotide sequences encoding the same amino acid sequence. Base substitutions were found at the third letter of five codons among the three genes. Each open reading frame was composed of 2,133 bases, encoding 711 amino acids containing 31 amino acids as a signal sequence. The molecular weight of the mature enzyme was estimated to be 75,374. The CGTase gene (cgtM) of B. macerans IFO3490 was composed of 2,142 bases, encoding 714 amino acids containing 27 residues as a signal sequence. The molecular weight of the mature enzyme was estimated to be 74,008. The sequence determined in this work was quite different from that reported previously by other workers. From data on the three-dimensional structure of a CGTase, seven kinds of chimeric CGTase genes were constructed by using cgt-1 from B. stearothermophilus NO2 and cgtM from B. macerans IFO3490. We examined the characteristics of these chimeric enzymes on cyclodextrin production and thermostability. It was found that the cyclization reaction was conferred by the NH2-terminal region of CGTase and that the thermostability of some chimeric enzymes was lower than that of the parental CGTases.  相似文献   

16.
Endothelium-derived relaxing factor (EDRF), identified as nitric oxide (NO), is derived from a guanidino nitrogen of L-arginine via its metabolism by nitric oxide synthase (NOS). Herein, we report the molecular cloning of a cDNA encoding the constitutive calcium-calmodulin (Ca2+/CaM)-regulated nitric oxide synthase (ECNOS). A full-length ECNOS clone was isolated by screening a bovine aortic endothelial cell cDNA library using a fragment of rat brain NOS (bNOS) cDNA. This cDNA has an open reading frame of 3615 nucleotides encoding a 1205-amino acid protein. Membranes prepared from COS cells transfected with the ECNOS cDNA demonstrated NADPH- and Ca2+/CaM- dependent conversion of L-, but not D-, arginine to NO and citrulline that was inhibited by NG-nitro-L-arginine methyl ester. Comparison of the deduced amino acid sequence of ECNOS to the bNOS and macrophage NOS (Mac-NOS) sequences revealed 57 and 50% identity, respectively. In addition, ECNOS contains a unique N-myristylation consensus sequence (not shared by bNOS or Mac-NOS) that may explain its membrane localization.  相似文献   

17.
The effects of pentamidine isethionate (reference drug) and N,N'-diphenyl-4-methoxy-benzamidine (test compound) on NO. production by Leishmania amazonensis promastigotes and axenic amastigotes were investigated by measuring nitrite, a by-product of nitric oxide released into culture supernatants. The NO. production by infective promastigotes was inhibited by OCH(3)-amidine in about 23.53% and by pentamidine in only 3.78%. In axenic amastigotes, the inhibition of NO. production by OCH(3)-amidine was significantly higher (52.94%; p=0.01) than that by pentamidine, which inhibited this radical production nonsignificantly (25.29%; p=0.1). The mechanism of amidine derivatives, as an antimicrobial agent, is unknown. However, other amidines, such as a diamidine (pentamidine), contain chemical structures shared by the guanidino group of the nitric oxide synthase substrate L-arginine, suggesting the possibility of an interaction with this enzyme or electronic factors (substituent constant) that alter physical and chemical properties significant for biological activity.  相似文献   

18.
Endothelial function is impaired in hypercholesterolemia and atherosclerosis, which is probably due to reduced biological activity of endothelium-derived nitric oxide (NO). NO is synthesized in functionally intact endothelium by oxidation of the terminal guanidino nitrogen atom(s) of the amino acid precursor, L-arginine. We applied stable isotope dilution techniques and gas chromatographic-mass spectrometric approaches to investigate metabolism of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate in hypercholesterolemic rabbits and controls. After 4 weeks on control or 1% cholesterol-enriched diet, rabbits received 267 +/- 6 micromol of L-[guanidino-(15)N(2)]-arginine/kg of body weight via gastric cannulation. (15)N-isotope content of L-arginine in plasma and in platelet lysates increased 2h later in both groups, and almost returned to baseline until 24h. (15)N-isotope content of plasma nitrite and nitrate also increased in both groups at 2h, and had almost returned to natural content 24h later. (15)N-isotope content of urinary nitrate was significantly increased in control animals in urines collected from 0 to 12, 12 to 24, and had returned to baseline in the urine sample collected from 24 to 48 h. In the cholesterol group only a slight, insignificant elevation of (15)N-isotope content was observed for urinary nitrate. The extent of conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate was strongly and inversely correlated to plasma concentration of the endogenous NO synthase inhibitor, asymmetric dimethylarginine (ADMA), which was elevated in cholesterol-fed rabbits (R=0.77; p < 0.05). Our data show that baseline NO synthase turnover rate is reduced in rabbits during early hypercholesterolemia. Our study gives evidence that the mechanism of the impaired conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate most likely involves inhibition of NO synthase by ADMA, which is present in elevated concentrations in hypercholesterolemia.  相似文献   

19.
Murine macrophages activated by interferon-gamma and lipopolysaccharide become leishmanicidal through a process involving L-arginine-derived nitrogen oxidation products. Both nitrite secretion and parasite killing by activated macrophages were inhibited by 3-amino-1,2,4-triazole as well as the related compound, 3-amino-1,2,4-triazine. Moreover, NO synthase activity in cytosolic extracts of activated cells was inhibited by both compounds. 4-amino-1,2,4-triazole, an isomer of 3-amino-1,2,4-triazole, was without effect. Our results suggest that besides its known inhibitory effect on catalases and peroxidases, 3-amino-1,2,4-triazole is an inhibitor of NO synthase. The resemblance between the tautomeric form of 3-amino-1,2,4-triazole and the guanidino group of L-arginine, the natural substrate for NO synthase, might be responsible for the observed inhibition.  相似文献   

20.
Cu(II)-poly(L-lysine) complexes have been studied using potentiometric titrations, optical absorption and circular dichroism spectra. As in the Cu(II)-poly(L-arginine) system studied previously potentiometric and spectral data consistently show that two types of complexes are formed. The first formed below pH 7.6 contains two amine nitrogens and two oxygen from water molecules at the corners of a square in which the metal occupies the center. The second is obtained at pH above 7.6 when the oxygen atoms are replaced by two adjacent peptide nitrogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号