首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The three murine monoclonal antibodies (MAb), D1G2, D9D10, and D13C8, are specific for human interferon-gamma (IFN-gamma), but not human IFN-alpha and IFN-beta. They react weakly with heat-treated IFN-gamma. The three antibodies recognize different epitopes of the IFN-gamma molecule, as evaluated by antibody-binding inhibition experiments. We have used these three monoclonal antibodies to construct a sandwich enzyme-linked immunosorbent assay (ELISA). The best result was obtained when we used D1G2 or D9D10 MAb as a solid-phase immunosorbent and D1G2 or D9D10 MAb as a tracer. When we measured IFN-gamma in sera by a combination of D1G2 (a solid-phase) and D1G2 (a tracer), a result similar to the one by a combination of D9D10 (a solid-phase) and D1G2 (a tracer), was obtained. This may suggest that human IFN-gamma exists in oligomeric form. Recombinant human IFN-gamma expressed in E. coli is detectable at a concentration of 1 ng/ml in this sandwich ELISA. This assay can be employed for the analysis of the structural characteristics of the human IFN-gamma molecule as well as measurement of IFN-gamma in human sera and tissue culture fluids.  相似文献   

2.
Cytochrome P450scc (CYP11A1) can hydroxylate vitamin D3 to produce 20-hydroxyvitamin D3 and other poorly characterized hydroxylated products. The present study aimed to identify all the products of vitamin D3 metabolism by P450scc, as well as the pathways leading to their formation. Besides 20-hydroxyvitamin D3, other major metabolites of vitamin D3 were a dihydroxyvitamin D3 and a trihydroxyvitamin D3 product. The dihydroxyvitamin D3 was clearly identified as 20,23-dihydroxyvitamin D3 by NMR, in contrast to previous reports that postulated hydroxyl groups in positions 20 and 22. NMR of the trihydroxy product identified it as 17alpha,20,23-trihydroxyvitamin D3. This product could be directly produced by P450scc acting on 20,23-dihydroxyvitamin D3, confirming that hydroxyl groups are present at positions 20 and 23. Three minor products of D3 metabolism by P450scc were identified by MS and by examining their subsequent metabolism by P450scc. These products were 23-hydroxyvitamin D3, 17alpha-hydroxyvitamin D3 and 17alpha,20-dihydroxyvitamin D3 and arise from the three P450scc-catalysed hydroxylations occurring in a different order. We conclude that the major pathway of vitamin D3 metabolism by P450scc is: vitamin D3 --> 20-hydroxyvitamin D3 --> 20,23-dihydroxyvitamin D3 --> 17alpha,20,23-trihydroxyvitamin D3. The major products dissociate from the P450scc active site and accumulate at a concentration well above the P450scc concentration. Our new identification of the major dihydroxyvitamin D3 product as 20,23-dihydroxyvitamin D3, rather than 20,22-dihydroxyvitamin D3, explains why there is no cleavage of the vitamin D3 side chain, unlike the metabolism of cholesterol by P450scc.  相似文献   

3.
The alteration in the biologic activity of the vitamin D3 molecule resulting from the replacement of a hydrogen atom with a fluorine atom is a subject of fundamental interest. To investigate this problem we synthesized 3 beta-fluorovitamin D3 6 and its hydrogen analog, 3-deoxyvitamin D3 7, and tested the biologic activity of each by in vitro and in vivo methods. Contrary to previous reports which showed that 3 beta-fluorovitamin D3 was as active as vitamin D3 in vivo, we found that the fluoro-analog was less active than vitamin D3. With regard to stimulation of intestinal calcium transport and bone calcium mobilization in the D-deficient hypocalcemic rat, 3 beta-fluorovitamin D3 showed significantly greater biologic activity than its hydrogen analog, 3-deoxyvitamin D3. In the organ-cultured, embryonic chick duodenum, 3 beta-fluorovitamin D3 was approx 1/1000th as active as the native hormone, 1,25-dihydroxyvitamin D3, while 3-deoxyvitamin D3 was inactive even at microM concentrations, in the induction of the vitamin D-dependent, calcium-binding protein. With regard to in vitro activity in displacing radiolabeled 25-hydroxyvitamin D3 from vitamin D binding protein and radiolabelled 1,25-dihydroxyvitamin D3 from a chick intestinal cytosol receptor, 3 beta-fluorovitamin D3 and 3 beta-deoxyvitamin D3 both showed very poor binding efficiencies when compared with vitamin D3. Our results show that the substitution of a fluorine atom for a hydrogen atom at the C-3 position of the vitamin D3 molecule results in a fluorovitamin 6 with significantly more biological activity than its hydrogen analog, 3-deoxyvitamin D3 7.  相似文献   

4.
The bacterial flagellar hook is a short, curved tubular structure made of FlgE. The hook connects the basal body as a rotary motor and the filament as a helical propeller and functions as a universal joint to smoothly transmit torque produced by the motor to the filament. Salmonella FlgE consists of D0, Dc, D1 and D2 domains. Axial interactions between a triangular loop of domain D1 (D1-loop) and domain D2 are postulated to be responsible for hook supercoiling. In contrast, Bacillus FlgE lacks the D1-loop and domain D2. Here, to clarify the roles of the D1-loop and domain D2 in the mechanical function, we carried out deletion analysis of Salmonella FlgE. A deletion of the D1-loop conferred a loss-of-function phenotype whereas that of domain D2 did not. The D1-loop deletion inhibited hook polymerization. Suppressor mutations of the D1-loop deletion was located within FlgD, which acts as the hook cap to promote hook assembly. This suggests a possible interaction between the D1-loop of FlgE and FlgD. Suppressor mutant cells produced straight hooks, but retained the ability to form a flagellar bundle behind a cell body, suggesting that the loop deletion does not affect the bending flexibility of the Salmonella hook.  相似文献   

5.
In this research project, a colloidal solution of silver nanocubes was synthesized and using these nanocubes as building blocks, 2D and 3D ordered structures on solid supports were fabricated to study their optical properties and refractive index sensitivities. The silver nanocubes were synthesized by the polyol reduction process while their 2D and 3D ordered structures were fabricated by Langmuir-Blodgett trough (LB). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to investigate the size and shape of the nanostructures as well as the morphologies of 2D and 3D structures. UV-visible absorption spectroscopy was employed to explore their optical properties. Finally, 2D and 3D assemblies of silver nanocubes were employed to investigate their refractive index sensitivity (RIS). The SEM image showed silver nanocubes with nominal edge length of 80 nm. Extinction spectra of 2D and 3D ordered structures are different than those in a colloidal state. Intensity of the plasmon resonance modes is higher for the 3D assembly than that of the 2D assembly. A new band in the low energy region of the spectrum appears for the 3D assembly because of interparticle coupling of the plasmon resonance modes. 3D assembly showed a higher RIS (158.9/ RIU) than of the 2D assembly (150.3/RIU). However, nanocubes are less ordered in 2D substrate than its counterpart 3D. Such 2D and 3D assemblies of silver nanocubes (AgNCs) could be potential candidates for making refractive index-based sensors as well as promising surface-enhanced Raman scattering (SERS) active substrates.  相似文献   

6.
The type 3 deiodinase (D3) inactivates thyroid hormone action by catalyzing tissue-specific inner ring deiodination, predominantly during embryonic development. D3 has gained much attention as a player in the euthyroid sick syndrome, given its robust reactivation during injury and/or illness. Whereas much of the structure biology of the deiodinases is derived from studies with D2, a dimeric endoplasmic reticulum obligatory activating deiodinase, little is known about the holostructure of the plasma membrane resident D3, the deiodinase capable of thyroid hormone inactivation. Here we used fluorescence resonance energy transfer in live cells to demonstrate that D3 exists as homodimer. While D3 homodimerized in its native state, minor heterodimerization was also observed between D3:D1 and D3:D2 in intact cells, the significance of which remains elusive. Incubation with 0.5-1.2 m urea resulted in loss of D3 homodimerization as assessed by bioluminescence resonance energy transfer and a proportional loss of enzyme activity, to a maximum of approximately 50%. Protein modeling using a D2-based scaffold identified potential dimerization surfaces in the transmembrane and globular domains. Truncation of the transmembrane domain (DeltaD3) abrogated dimerization and deiodinase activity except when coexpressed with full-length catalytically inactive deiodinase, thus assembled as DeltaD3:D3 dimer; thus the D3 globular domain also exhibits dimerization surfaces. In conclusion, the inactivating deiodinase D3 exists as homo- or heterodimer in living intact cells, a feature that is critical for their catalytic activities.  相似文献   

7.
Abstract

The sub-family of dopamine D1-like receptors is now known to be comprised of at least two members: the originally cloned D1 receptor (herein referred to as the D1a receptor) and a related receptor referred to as the D1b, D1β or D5 dopamine receptor (herein referred to as the D1b/D5 receptor). Here, we characterize the D1b/D5 receptor expressed transiently in COS-7 cells and permanently in Ltk? cells.

Transiently expressed human D1b/D5 receptors bind the D1 specific ligand [125I]SCH 23982 saturably and with high affinity (KD = 500 pM). Competition for [125I]SCH 23982 binding to rat D1b/D5 and human D1a and D1b/D5 receptors supports the contention that the two D1b/D5 receptors are species homologues. Furthermore, in COS-7 cells, as previously observed, dopamine competes for the binding of [125I]SCH 23982 to human D1b/D5 receptors with a higher affinity than that seen at the human D1a receptor. These results are similar to those seen in Ltk? cells permanently transfected with the human D1b/D5 receptor. In these cells, dopamine competition for [125I]SCH 23982 binding is complex, sensitive to guanine nucleotides and of a higher affinity than that observed for dopamine binding to the human D1a receptor expressed in these same cells. In both D1a and D1b/D5 expressing Ltk? cells, dopamine stimulates adenylyl cyclase with an EC50 of = 200 nM. Furthermore, preincubation of Ltk? cells expressing the D1a and D1b/D5 receptors with dopamine results in desensitization of the response of adenylyl cyclase to subsequent agonist stimulation.  相似文献   

8.
Human high affinity receptor for IgE is a membrane glycoprotein multichain complex presenting two extracellular Ig modules in its alpha-chain (D1D2). The receptor IgE binding region is located within the membrane-proximal module D2, while the N-terminal module D1 appears to promote an optimal receptor conformation for IgE binding. To understand the structural relationship between the two modules, we dissected FcepsilonRI alpha-chain into its discrete Ig units and expressed them in mammalian cells. Unexpectedly, D2 was secreted as a disulphide-linked dimer, while D1 was monomeric. Active secretion and full glycosylation of dimeric D2 suggest a native-like conformation of the protein, justifying the escape from the endoplasmic reticulum/Golgi quality control systems. We then propose a domain-swapping model for D2, in which two interdigitated polypeptide chains assume the overall conformation of two Ig modules, as observed for rat CD2 N-terminal domain. Fusion of an unrelated Ig fold moiety at the N terminus of D2 did not interfere with its dimerisation. While D1D2 assumes a correct fold, co-expression of both isolated domains in the same cell did not restore monomeric folding of D2. Thus, D1 appears to assist the appropriate folding of FcepsilonRI alpha-chain, acting as an uncleavable intramolecular chaperone-like block towards D2.  相似文献   

9.
Thrombomodulin, an endothelial thrombin receptor, acts as a cofactor for the thrombin-catalyzed activation of anticoagulant protein C. The extracellular region of human thrombomodulin consists of three tentative domains, a NH2-terminal domain (D1), a domain involving six consecutive epidermal growth factor-like structures (D2), and an O-glycosylation-rich domain (D3). To identify the domain onto which thrombin binds, a series of recombinant proteins corresponding to the entire protein, D1, D2, D1 + D2, D1 + D2 + D3, and D2 + D3 were expressed in simian COS-1 cells. The proteins were partially purified by rabbit anti-thrombomodulin-F(ab')2-agarose chromatography. Western blotting analysis showed the expression of the respective recombinant proteins. All proteins involving D2, as well as D2 alone, had cofactor activity that allowed binding directly to thrombin, but D1 did not. The cofactor activity of the entire protein but not the mutants is increased in the presence of phospholipids and this is the only protein that binds to the phospholipid layer. These results indicate that the domain involving the epidermal growth factor-like structures of thrombomodulin is essential for thrombin binding and expression of the cofactor activity for protein C activation and that none of the extracellular domains interact with phospholipids.  相似文献   

10.
Escherichia coli SpoT protein, with 702 amino acid residues, is a bifunctional enzyme catalyzing both guanosine 5'-diphosphate 3'-diphosphate (ppGpp) degradation and its synthesis. First, we investigated how many domains are included in SpoT protein, by limited hydrolysis of the protein with serine proteases, alpha-chymotrypsin, and elastase. Based on the results, we deduced that SpoT protein is composed of two major domains, an N-terminal half domain from Met1 to Phe373 and a C-terminal half domain from Glu374 to Asn702 (C-terminal end). In addition, by a further alpha-chymotrypsin digestion, two cleaved sites were found at Arg196 in the N-terminal half domain (D12) and at Lys475 in the C-terminal half domain (D34), to produce four minor domains, D1, D2, D3, and D4. Next, plasmids expressing the two major domains (D12 and D34) and four minor domains (D1, D2, D3, and D4) were constructed. Consequently, the deduced SpoT minor domains as well as the major domains were expressed as stable protein units, except for D4. D4 may also be folded into a stable protein in E. coli cells, since high expression of D4 from a plasmid results in host cell lethality. E. coli relA -, spoT- double null strains expressing D1, D2, and D12 recovered cell growth in M9 minimal medium, but the transformants of D3, D4, and D34 did not grow in the minimal medium. This indicates that ppGpp synthetic activities could be restricted in the N-terminal half domain (D12, D1, and D2).  相似文献   

11.
The role of vitamin D (25‐OH‐D, or 25‐hydroxyvitamin D) and its potential confounders in relationship to melanoma risk and mortality is discussed. The paradox that ultraviolet radiation (UVR) exposure is the major environmental risk factor for melanoma etiology as well as a major source of vitamin D might be explained by viewing vitamin D levels as the result of a healthy lifestyle rather than a cause of health.  相似文献   

12.
A mouse monoclonal antibody (2D7 mAb), which specifically bound to the alpha2 domain of HLA class I, rapidly induces cell aggregation accompanied by weak cytotoxicity against ARH-77 cells, suggesting that 2D7 mAb had a potential for agonist antibody. In order to enhance this cytotoxicity, 2D7 mAb was engineered to be a small bivalent antibody fragment, 2D7 diabody. The resultant 2D7 diabody showed a strong cytotoxicity against ARH-77 cells. As a notable characteristic feature, the lethal effect of 2D7 diabody was quite rapid, mediated by a caspase-independent death pathway. Furthermore, 2D7 diabody also showed cytotoxicity against several leukemia and lymphoma cell lines, and mitogen-activated peripheral blood mononuclear cells (PBMC), but not for normal resting PBMC and adherent cell lines such as HUVEC. These results suggest that 2D7 diabody could be expected as a novel therapeutic antibody for hematological malignancies as well as inflammatory diseases.  相似文献   

13.
Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilids (Diptera: Drosophilidae) were studied from low to high altitudes in central Japan to understand their adaptation to seasonal changes of environmental conditions. Drosophila unipectinata and D. oshimai specialized to flowers, D. suzukii and D. subpulchrella depended almost on fruits, while D. lutescens , D. rufa , D. auraria , D. biauraria and D. sternopleuralis used both of them. It was assumed that D. unipectinata moved from low to high altitudes in June while D. oshimai , D. suzukii and D. subpulchrella in July. Migration of D. unipectinata is considered as a means to avoid summer heat or exploit early-summer resources at high altitudes. On the other hand, D. oshimai , D. suzukii and D. subpulchrella have the capacity to pass the summer at low altitudes, and therefore their migration is assumed as a means to escape from resource-poor conditions in summer at low altitudes or exploit resources at high altitudes. The generalist species, D. lutescens , D. rufa , D. auraria , D. biauraria and D. sternopleuralis , would not perform such extensive movements between low and high altitudes. They may pass the summer at low or mid altitudes depending on accidentally fallen immature fruits and/or some other resources such as decayed leaves.  相似文献   

14.
Strigolactones (SLs) are a class of plant hormones that regulate shoot branching as well as being known as root-derived signals for parasitic and symbiotic interactions. The physical interaction between SLs and the DWARF14 (D14) receptor family can be examined by differential scanning fluorimetry (DSF) that monitors the changes in protein melting temperature (Tm). The Tm of D14 is lowered by bioactive SLs in DSF analysis. In this report, we screened the compounds that lower the Tm of Arabidopsis D14 (AtD14) as potential candidates for SL agonists using DSF analysis. Subsequent physiological analyzes revealed that 113D10 acts as a novel SL agonist in a D14-dependent manner. Intriguingly, 113D10 has a chemical structure different from natural SLs in that it does not possess an enol ether bond that connects to a methylbutenolide moiety. Moreover, 113D10 does not stimulate seed germination of root parasitic plants. Accordingly, 113D10 can be a useful tool for SL studies and agricultural applications.  相似文献   

15.
Summary Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. A minimum recombinant analysis using D13S22, ESD, RB1, D13S31, D13S55, D13S26, D13S39, and D13S12, all localized at 13q14-q22, has been carried out in 20WD families of Northwest-European origin. No inconsistencies have been observed with respect to locus order or location of the WD locus (WND) compared with previous linkage studies. D13S31 was mapped as the closest marker proximal to WND, whereas D13S55 and D13S26 were mapped as the closest markers distal to WND. We have identified a crossover between WND and D13S31 in one family and a crossover between WND and D13S55 in another. These crossover sites can be used as reference points for new chromosome 13q14-q21 markers, and are therefore important for a more accurate mapping of the WD locus.  相似文献   

16.
The spider genus Dysdera has undergone an extraordinary species radiation in the Canary Islands. As a first step towards the recovery of the endemic species phylogeny and the study of the evolutionary processes underlying its diversification, an exhaustive taxonomical work is required. The present paper deals with the endemic species that inhabit the western Canaries: La Gomera, La Palma and El Hierro. Four new species are described: Dysdera enghoffi sp. n., D. hirguan sp. n., D. orahan sp. n. and D. ramblae sp. n. Three new synonymies are reported: D. palmensis Schmidt, 1982 = D. crocota Koch, 1839, D. multipilosa Wunderlich, 1991 = D. levipes Wunderlich, 1987 and D. silvatica Schmidt, 1981 = D. rugichelis Simon, 1907. Four species are redescribed: D. calderensis Wunderlich, 1991 D. clavisetae Wunderlich, 1991 D. levipes Wunderlich, 1987 and D. rugichelis Simon, 1907 for which a neotype is designated. The presence on the western islands of the formerly described species D. insulana Simon, 1883, D. macra Simon, 1883 and D. nesiotes Simon, 1907 are considered to be doubtful. The citation of D. cribellata Simon, 1883 in La Palma (Simon, 1907) was based on a mis-identification. The species D. gomerensis Strand, 1911 is designated as a nomen dubium. Morphological affinities as well as ecology and distribution of the species are discussed.  相似文献   

17.
Deletion of C19 in the structure of 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] does not substantially alter the biological potency but prevents the conversion between the vitamin and the previtamin form. Hence, this modification allows the study of locked previtamin and vitamin forms. The locked 19-nor-1,25(OH)2-previtamin D3 analog (19-nor-previtamin D) had a low biological activity and was a rather weak activator of the genomic signal transduction pathway. 19-Nor-trans-decalin-1,25(OH)2-vitamin D3 (19-nor-TD-vitamin D), characterized by the presence of a trans-fused decalin CD-ring system, was 10-fold more potent than the parent compound and was a potent activator of the genomic signal transduction pathway. Surprisingly, the previtamin, 19-nor-trans-decalin-1,25(OH)2-previtamin D3 (19-nor-TD-previtamin D), was as potent as 1,25(OH)2D3 in inhibiting cell proliferation and inducing cell differentiation and represents the first previtamin structure with pronounced vitamin D-like activity. Furthermore, this compound interacted as efficiently as 1,25(OH)2D3 with the vitamin D receptor (VDR), retinoid X receptor (RXR), coactivators, and DNA, which illustrated its potent ability to activate the genomic signal transduction pathway. Analysis of the transactivation potency of 12 VDR point mutants after stimulation with 19-nor-TD-previtamin D revealed that this analog used the same contact points within the receptor as did 1,25(OH)2D3. This could be confirmed by modeling analysis of this compound in the ligand binding pocket of VDR. In conclusion, a previtamin D3 analog is presented with genomic activities equivalent to 1,25(OH)2D3.  相似文献   

18.
19.
Abstract: Although members of the multiple vertebrate/mammalian dopamine D1 receptor gene family can be selectively classified on the basis of their molecular/phylogenetic, structural, and tissue distribution profiles, no subtype-specific discriminating agents have yet been identified that can functionally differentiate these receptors. To define distinct pharmacological/functional attributes of multiple D1-like receptors, we analyzed the ligand binding profiles, affinity, and functional activity of 12 novel NNC compounds at mammalian/vertebrate D1/D1A and D5/D1B, as well as vertebrate D1C/D1D, dopamine receptors transiently expressed in COS-7 cells. Of all the compounds tested, only NNC 01-0012 displayed preferential selectivity for vertebrate D1C receptors, inhibiting [3H]SCH-23390 binding with an estimated affinity (∼0.6 n M ) 20-fold higher than either mammalian/vertebrate D1/D1A or D5/D1B receptors or the D1D receptor. Functionally, NNC 01-0012 is a potent antagonist at D1C receptors, inhibiting to basal levels dopamine (10 µ M )-stimulated adenylyl cyclase activity. In contrast, NNC 01-0012 (10 µ M ) exhibits weak antagonist activity at D1A receptors, inhibiting only 60% of maximal cyclic AMP production by dopamine, while acting as a partial agonist at vertebrate D1B and D1D receptors, stimulating adenylyl cyclase activity by ∼33% relative to the full agonist dopamine (10 µ M ), an effect that was blocked by the selective D1 receptor antagonist NNC 22-0010. These data clearly suggest that the benzazepine NNC 01-0012, despite lacking the N -methyl residue in the R3 position, is a selective and potent D1C receptor antagonist. Moreover, the differential signal transduction properties exhibited by NNC 01-0012 at these receptor subtypes provide further evidence, at least in vertebrates, for the classification of the D1C receptor as a distinct D1 receptor subtype.  相似文献   

20.
CAD/DFF40, the nuclease responsible for DNA fragmentation during apoptosis, exists as a heterodimeric complex with DFF45/ICAD. This study determines the molecular mechanisms of regulation of DFF40 via the chaperone and inhibition activities of DFF45. We analyze proteins corresponding to the fragments (D1, D2, and D3) of DFF45 generated by cleavage at the caspase consensus sites in DFF45. Either D1 or D2, as an isolated domain, is capable of inhibiting DFF40 nuclease activity while double domain fragments D1-2 and D2-3, as well as full-length DFF45, bind to DFF40 with high affinity and are much more effective inhibitors. The chaperone activity of DFF45 resides in part in its ability to maintain DFF40 as a soluble protein. In addition, D1 of DFF45 was found to be critical for the expression of active DFF40 in vivo, suggesting a role for DFF45 in binding nascent DFF40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号