首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
Glucagon-like peptide 1 (GLP-1) is a potent anti-hyperglycemic hormone currently under investigation for its therapeutic potential. However, due to rapid degradation by dipeptidyl peptidase IV (DPP IV), which limits its metabolic stability and eliminates its insulinotropic activity, it has been impossible to assess its true efficacy in vivo. In chloralose-anesthetized pigs given valine-pyrrolidide (to block endogenous DPP IV activity), the independent effects of GLP-1-(7-36) amide on glucose and insulin responses to intravenous glucose were assessed, and the metabolite generated by DPP IV, GLP-1-(9-36) amide, was investigated for any ability to influence these responses. GLP-1-(7-36) amide enhanced insulin secretion (P < 0.03 vs. vehicle), but GLP-1-(9-36) amide was without effect, either alone or when coinfused with GLP-1-(7-36) amide. In contrast, GLP-1-(9-36) amide did affect glucose responses (P < 0.03). Glucose excursions were greater after saline (121 +/- 17 mmol x l(-1) x min) than after GLP-1-(9-36) amide (73 +/- 19 mmol x l(-1) x min; P < 0.05), GLP-1-(7-36) amide (62 +/- 13 mmol x l(-1) x min; P < 0.02) or GLP-1-(7-36) amide + GLP-1-(9-36) amide (50 +/-13 mmol x l(-1) x min; P < 0.005). Glucose elimination rates were faster after GLP-1-(7-36) amide + (9-36) amide (10.3 +/- 1.2%/min) than after GLP-1-(7-36) amide (7.0 +/- 0.9%/min; P < 0.04), GLP-1-(9-36) amide (6.8 +/- 1.0%/min; P < 0.03), or saline (5.4 +/- 1.2%/min; P < 0.005). Glucagon concentrations were unaffected. These results demonstrate that GLP-1-(9-36) amide neither stimulates insulin secretion nor antagonizes the insulinotropic effect of GLP-1-(7-36) amide in vivo. Moreover, the metabolite itself possesses anti-hyperglycemic effects, supporting the hypothesis that selective DPP IV action is important in glucose homeostasis.  相似文献   

2.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P < 0.001 vs. GLP-1-(7-36) amide administration]. GLP-1-(7-36) amide reduced fasting and postprandial glucose concentrations (P < 0.001) and delayed gastric emptying (P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7-36) amide but not by GLP-1-(9-36) amide. However, the postprandial rise in glycemia was reduced significantly (by approximately 6 mg/dl) by GLP-1-(9-36) amide (P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9-36) amide appears to be small compared with that of intact GLP-1-(7-36) amide.  相似文献   

3.
We have shown previously that the glucagon-like peptide-1 (GLP-1)-(7-36) amide increases myocardial glucose uptake and improves left ventricular (LV) and systemic hemodynamics in both conscious dogs with pacing-induced dilated cardiomyopathy (DCM) and humans with LV systolic dysfunction after acute myocardial infarction. However, GLP-1-(7-36) is rapidly degraded in the plasma to GLP-1-(9-36) by dipeptidyl peptidase IV (DPP IV), raising the issue of which peptide is the active moiety. By way of methodology, we compared the efficacy of a 48-h continuous intravenous infusion of GLP-1-(7-36) (1.5 pmol.kg(-1).min(-1)) to GLP-1-(9-36) (1.5 pmol.kg(-1).min(-1)) in 28 conscious, chronically instrumented dogs with pacing-induced DCM by measuring LV function and transmyocardial substrate uptake under basal and insulin-stimulated conditions using hyperinsulinemic-euglycemic clamps. As a result, dogs with DCM demonstrated myocardial insulin resistance under basal and insulin-stimulated conditions. Both GLP-1-(7-36) and GLP-1-(9-36) significantly reduced (P < 0.01) LV end-diastolic pressure [GLP-1-(7-36), 28 +/- 1 to 15 +/- 2 mmHg; GLP-1-(9-36), 29 +/- 2 to 16 +/- 1 mmHg] and significantly increased (P < 0.01) the first derivative of LV pressure [GLP-1-(7-36), 1,315 +/- 81 to 2,195 +/- 102 mmHg/s; GLP-1-(9-36), 1,336 +/- 77 to 2,208 +/- 68 mmHg] and cardiac output [GLP-1-(7-36), 1.5 +/- 0.1 to 1.9 +/- 0.1 l/min; GLP-1-(9-36), 2.0 +/- 0.1 to 2.4 +/- 0.05 l/min], whereas an equivolume infusion of saline had no effect. Both peptides increased myocardial glucose uptake but without a significant increase in plasma insulin. During the GLP-1-(9-36) infusion, negligible active (NH2-terminal) peptide was measured in the plasma. In conclusion, in DCM, GLP-1-(9-36) mimics the effects of GLP-1-(7-36) in stimulating myocardial glucose uptake and improving LV and systemic hemodynamics through insulinomimetic as opposed to insulinotropic effects. These data suggest that GLP-1-(9-36) amide is an active peptide.  相似文献   

4.
GIP metabolite [GIP (3-42)] and GLP-1 metabolite [GLP-1 (9-36) amide] have been reported to differ with regard to biological actions. Systemic DPP-4 inhibition can therefore reveal different actions of GIP and GLP-1. In catheter wearing Wistar rats, insulinotropic effects of equipotent doses of GIP (2.0 nmol/kg) and GLP-1 (7-36) amide (4.0 nmol/kg) and vehicle were tested in the absence/presence of DPP-4 inhibition. Blood glucose and insulin were frequently sampled. DPP-4 inhibitor was given at -20 min, the incretin at -5 min and the intravenous glucose tolerance test (0.4 g glucose/kg) commenced at 0 min. G-AUC and I-AUC, insulinogenic index and glucose efflux, were calculated from glucose and insulin curves. Systemic DPP-4 inhibition potentiated the acute GIP incretin effects: I-AUC (115±34 vs. 153±39 ng·min/ml), increased the insulinogenic index (0.74±0.24 vs. 0.99±0.26 ng/mmol), and improved glucose efflux (19.8±3.1 vs. 20.5±5.0 min?1). The GLP-1 incretin effects were diminished: I-AUC (124±18 vs. 106±38 ng·min/ml), the insulinogenic index was decreased (0.70±0.18 vs. 0.50±0.19 ng/mmol), and glucose efflux declined (14.9±3.1 vs. 11.1±3.7 min?1). GLP-1 and GIP differ remarkably in their glucoregulatory actions in healthy rats when DPP-4 is inhibited. These previously unrecognized actions of DPP-4 inhibitors could have implications for future use in humans.  相似文献   

5.
The incretin hormone glucagon-like peptide-1 (GLP-1)-(736)amide is best known for its antidiabetogenic actions mediated via aGLP-1 receptor present on pancreatic endocrine cells. To investigatethe molecular mechanisms of GLP-1 action in muscle, we used cultured L6myotubes. In L6 myotubes, GLP-1 enhanced insulin-stimulated glycogensynthesis by 140% while stimulatingCO2 production and lactateformation by 150%. In the presence of IBMX, GLP-1 diminished cAMPlevels to 83% of IBMX alone. In L6 myotubes transfected with pancreatic GLP-1 receptor, GLP-1 increased cAMP levels and inhibited glycogen synthesis by 60%. An antagonist of pancreatic GLP-1 receptor, exendin-4-(939), inhibited GLP-1-mediated glycogen synthesis in GLP-1receptor-transfected L6 myotubes. However, in parental L6 myotubes,exendin-4-(939) and GLP-1-(136) amide, an inactive peptide onpancreatic GLP-1 receptor, displaced125I-labeled GLP-1binding and stimulated glycogen synthesis by 186 and 130%,respectively. These results suggest that the insulinomimetic effects ofGLP-1 in L6 cells are likely to be mediated by a receptor that isdifferent from the GLP-1 receptor found in the pancreas.

  相似文献   

6.
The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide.  相似文献   

7.
Abstract: This study was designed to determine the possible role of brain glucagon-like peptide-1 (GLP-1) receptors in feeding behavior. In situ hybridization showed colocalization of the mRNAs for GLP-1 receptors, glucokinase, and GLUT-2 in the third ventricle wall and adjacent arcuate nucleus, median eminence, and supraoptic nucleus. These brain areas are considered to contain glucose-sensitive neurons mediating feeding behavior. Because GLP-1 receptors, GLUT-2, and glucokinase are proteins involved in the multistep process of glucose sensing in pancreatic β cells, the colocalization of specific GLP-1 receptors and glucose sensing-related proteins in hypothalamic neurons supports a role of this peptide in the hypothalamic regulation of macronutrient and water intake. This hypothesis was confirmed by analyzing the effects of both systemic and central administration of GLP-1 receptor ligands. Acute or subchronic intraperitoneal administration of GLP-1 (7–36) amide did not modify food and water intake, although a dose-dependent loss of body weight gain was observed 24 h after acute administration of the higher dose of the peptide. By contrast, the intracerebroventricular (i.c.v.) administration of GLP-1 (7–36) amide produced a biphasic effect on food intake characterized by an increase in the amount of food intake after acute i.c.v. delivery of 100 ng of the peptide. There was a marked reduction of food ingestion with the 1,000 and 2,000 ng doses of the peptide, which also produced a significant decrease of water intake. These effects seemed to be specific because i.c.v. administration of GLP-1 (1–37), a peptide with lower biological activity than GLP-1 (7–36) amide, did not change feeding behavior in food-deprived animals. Exendin-4, when given by i.c.v. administration in a broad range of doses (0.2, 1, 5, 25, 100, and 500 ng), proved to be a potent agonist of GLP-1 (7–36) amide. It decreased, in a dose-dependent manner, both food and water intake, starting at the dose of 25 ng per injection. Pretreatment with an i.c.v. dose of a GLP-1 receptor antagonist [exendin (9–39); 2,500 ng] reversed the inhibitory effects of GLP-1 (7–36) amide (1,000 ng dose) and exendin-4 (25 ng dose) on food and water ingestion. These findings suggest that GLP-1 (7–36) amide may modulate both food and drink intake in the rat through a central mechanism.  相似文献   

8.
In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter isoform (GLUT-2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP-1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross-linking assays. Specific binding of 125I-GLP-1(7-36) amide to the GLP-1R was detected in several brain areas and was inhibited by unlabelled GLP-1(7-36) amide, exendin-4 and exendin (9-39). A further aim of this work was to evaluate cerebral-glucose metabolism in control subjects by positron emission tomography (PET), using 2-[F-18] deoxy-D-glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP-1(7-36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG-6-phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT-2- and GK-containing cells.  相似文献   

9.
Two fragments of the receptor for glucagon-like peptide-1 (GLP-1), each containing the N-terminal domain, were expressed and characterized in either bacterial or mammalian cells. The first fragment, rNT-TM1, included the N-terminal domain and first transmembrane helix and was stably expressed in the membrane of human embryonic kidney 293 cells. The second, 6H-rNT, consisted of only the N-terminal domain of the receptor fused with a polyhistidine tag at its N terminus. The latter fragment was expressed in Escherichia coli in the form of inclusion bodies from which the protein was subsequently purified and refolded in vitro. Although both receptor fragments displayed negligible (125)I-labeled GLP-1(7-36)amide-specific binding, they both displayed high affinity for the radiolabeled peptide antagonist (125)I-exendin-4(9-39). Competition binding studies demonstrated that the N-terminal domain of the GLP-1 receptor maintains high affinity for the agonist exendin-4 as well as the antagonists exendin-4(3-39) and exendin-4(9-39) whereas, in contrast, GLP-1 affinity was greatly reduced. This study shows that although the exendin antagonists are not dependent upon the extracellular loops and transmembrane helices for maintaining their normal high affinity binding, the endogenous agonist GLP-1 requires regions outside of the N-terminal domain. Hence, distinct structural features in exendin-4, between residues 9 and 39, provide additional affinity for the N-terminal domain of the receptor. These data are consistent with a model for the binding of peptide ligands to the GLP-1 receptor in which the central and C-terminal regions of the peptides bind to the N terminus of the receptor, whereas the N-terminal residues of peptide agonists interact with the extracellular loops and transmembrane helices.  相似文献   

10.
Increasing evidence from both clinical and experimental studies indicates that the insulin-releasing hormone, glucagon-like peptide-1 (GLP-1) may exert additional protective/reparative effects on the cardiovascular system. The aim of this study was to examine vasorelaxant effects of GLP-1(7-36)amide, three structurally-related peptides and a non-peptide GLP-1 agonist in rat aorta. Interestingly, all GLP-1 compounds, including the established GLP-1 receptor antagonist, exendin (9-39) caused concentration-dependent relaxation. Mechanistic studies employing hyperpolarising concentrations of potassium or glybenclamide revealed that these relaxant effects are mediated via specific activation of ATP-sensitive potassium channels. Further experiments using a specific membrane-permeable cyclic AMP (cAMP) antagonist, and demonstration of increased cAMP production in response to GLP-1 illustrated the critical importance of this pathway. These data significantly extend previous observations suggesting that GLP-1 may modulate vascular function, and indicate that this effect may be mediated by the GLP-1 receptor. However, further studies are required in order to establish whether GLP-1 related agents may confer additional cardiovascular benefits to diabetic patients.  相似文献   

11.
The development of a sensitive radioimmunoassay (RIA) for C-terminally amidated forms of glucagon-like peptide-1 (GLP-1) is described. Rabbits immunized with GLP-1(7–36)amide conjugated to bovine serum albumin with glutaraldehyde produced antisera containing high-affinity antibodies directed against an epitope that included the free amidated C-terminus of the peptide. These antisera could be used in a sensitive RIA (detection limit 0.1 fmol/tube) that measured GLP-1(7–36)amide and GLP-1(1–36)amide equally. Total concentrations of amidated GLP-1 immunoreactivity in extracts of rat hypothalamus, pancreas and intestine were determined by RIA, and resolved into GLP-1(7–36)amide, GLP-1(1–36)amide and unidentified cross-reacting substances by HPLC. Whereas only GLP-1(7–36)amide could be identified in the hypothalamus, in amounts that represented 55–94% of total glucagon-like immunoreactivity (GLI), the pancreas produced chiefly GLP-1(1–36)amide, representing 0.8–3.4% of total GLI, and only trace or undetectable amounts of GLP-1(7–36)amide (0–0.36% of total GLI). This argues against any role of intrapancreatic GLP-1(7–36)amide in the secretion of insulin. In the terminal ileum total amidated GLP-1 immunoreactivity represented 27–73% of total GLI, and in five of six specimens only GLP-1(7–36)amide could be identified on HPLC, in amounts representing 13–17% of total GLI. Only one specimen of terminal ileum contained HPLC-identified GLP-1(1–36)amide (13% of total GLI) in addition to GLP-1(7–36)amide (31% of total GLI). Acid–ethanol extraction of peptide-free rat plasma with added GLP-1(7–36)amide gave recoveries of 91±SEM 2% in the range 20–200 pmol/l. Basal plasma amidated GLP-1 in six unanaesthetized rats was 4.1±1.1 pmol/l and rose to a maximum of 15.4±3.0 pmol/l 10 min after intragastric glucose 1 g/kg, illustrating the modest level of plasma responses of amidated forms of GLP-1.  相似文献   

12.
Glucagon-like peptide 1 (7-36) amide (GLP-1) and exendin-4 are gastrointestinal hormones as well as neuropeptides involved in glucose homeostasis and feeding regulation, both peripherally and at the central nervous system (CNS), acting through the same GLP-1 receptor. Aminergic neurotransmitters play a role in the modulation of feeding in the hypothalamus and we have previously found that peripheral hormones and neuropeptides, which are known to modulate feeding in the central nervous system, are able to modify catecholamine and serotonin release in the hypothalamus. In the present paper we have evaluated the effects of GLP-1 and exendin-4 on dopamine, norepinephrine, and serotonin release from rat hypothalamic synaptosomes, in vitro. We found that glucagon-like peptide 1 (7-36) amide and exendin-4 did not modify either basal or depolarization-induced dopamine and norepinephrine release; on the other hand glucagon-like peptide 1 (7-36) amide and exendin-4 stimulated serotonin release, in a dose dependent manner. We can conclude that the central anorectic effects of GLP-1 agonists could be partially mediated by increased serotonin release in the hypothalamus, leaving the catecholamine release unaffected.  相似文献   

13.
Circulation and degradation of GIP and GLP-1.   总被引:8,自引:0,他引:8  
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from the intestinal K- and L-cells, respectively, but are immediately subject to rapid degradation. GLP-1 is found in two active forms, amidated GLP-1 (7-36) amide and glycine-extended GLP-1 (7-37), while GIP exists as a single 42 amino acid peptide. The aminopeptidase, dipeptidyl peptidase IV (DPP IV), which is found in the endothelium of the local capillary bed within the intestinal wall, is important for the initial inactivation of both peptides, with GLP-1 being particularly readily degraded. DPP IV cleavage generates N-terminally truncated metabolites (GLP-1 (9-36) amide / (9-37) and GIP (3-42)), which are the major circulating forms. Subsequently, the peptides may be degraded by other enzymes and extracted in an organ-specific manner. However, other endogenous metabolites have not yet been identified, possibly because existing assays are unable either to recognize them or to differentiate them from the primary metabolites. Neutral endopeptidase 24.11 has been demonstrated to be able to degrade GLP-1 in vivo, but its relevance in GIP metabolism has not yet been established. Intact GLP-1 and GIP are inactivated during passage across the hepatic bed by DPP IV associated with the hepatocytes, and further degraded by the peripheral tissues, while the kidney is important for the final elimination of the metabolites.  相似文献   

14.
目的:观察胰高糖素样肽-1(GLP-1)对脐静脉内皮细胞(HUVECs)释放一氧化氮(NO)的影响,并探讨GLP-1受体及GLP-1(9-36)在其中的作用。方法:分别以GLP-1、艾塞那肽、GLP-1(9-36)、GLP-1+exendin(9-39)、GLP-1+西格列汀、GLP-1+西格列汀+exendin(9-39)孵育HUVECs,取培养上清以硝酸还原酶法检测NO浓度。结果:GLP-1剂量依赖性的增加HUVECs中NO释放,艾塞那肽和GLP-1(9-36)均可刺激NO释放,exendin(9-39)和西格列汀均可部分阻断GLP-1引起的NO释放。结论:GLP-1可能通过GLP-1受体及GLP-1(9-36)相关的途径刺激HUVECs NO释放,发挥直接的血管保护作用。  相似文献   

15.
We examined the Na(+)-dependency of the effects of GLP-1(7-36)amide in normal, overnight cultured rat islets. It was found that GLP-1(7-36)amide stimulated insulin secretion, 45Ca(2+)-efflux, and 86Rb(+)-efflux from prelabelled islets. All these effects were abolished by omitting Na+ from the medium and replacing it with N-methyl-glucamine. This suggests that GLP-1(7-36)amide stimulates insulin secretion by depolarizing the beta-cells by increasing their permeability to Na+.  相似文献   

16.
Glucagon-like peptide-1(7-36)amide (GLP-1) is a key insulinotropic hormone with the reported potential to differentiate non-insulin secreting cells into insulin-secreting cells. The short biological half-life of GLP-1 after cleavage by dipeptidylpeptidase IV (DPP IV) to GLP-1(9-36)amide is a major therapeutic drawback. Several GLP-1 analogues have been developed with improved stability and insulinotropic action. In this study, the N-terminally modified GLP-1 analogue, N-acetyl-GLP-1, was shown to be completely resistant to DPP IV, unlike native GLP-1, which was rapidly degraded. Furthermore, culture of pancreatic ductal ARIP cells for 72 h with N-acetyl-GLP-1 indicated a greater ability to induce pancreatic beta-cell-associated gene expression, including insulin and glucokinase. Further investigation of the effects of stable GLP-1 analogues on beta-cell differentiation is required to assess their potential in diabetic therapy.  相似文献   

17.
Glucagon-like peptide 1-(7-36) amide (GLP-1) potently inhibits rat feeding behavior after central administration. Because third ventricular injection of GLP-1 appeared to be less effective than lateral ventricular injection, we have reexamined this issue. In addition, we attempted to identify brain regions other than the paraventricular nucleus of the hypothalamus that are sensitive toward GLP-1-induced feeding suppression. Finally, we examined the local role of endogenous GLP-1 by specific GLP-1 receptor blockade. After lateral ventricular injection, GLP-1 significantly inhibited food intake of 24-h-fasted rats in a dose-dependent fashion with a minimal effective dose of 1 microg. After third ventricular injection, GLP-1 (1 microg) was similarly effective in suppressing food intake, which extends previous findings. Intracerebral microinjections of GLP-1 significantly suppressed food intake in the lateral (LH), dorsomedial (DMH), and ventromedial hypothalamus (VMH), but not in the medial nucleus of the amygdala. The minimal effective dose of GLP-1 was 0.3 microg at LH sites and 1 microg at DMH or VMH sites. LH microinjections of exendin-(9-39) amide, a GLP-1 receptor antagonist, at 1 or 2.5 microg did not alter feeding behavior in 24-h-fasted rats. In satiated animals, however, a single LH injection of 1 microg exendin-(9-39) amide significantly augmented food intake, but only during the first 20 min (0.6 vs. 0.1 g). With three repeated injections of 2.5 microg exendin-(9-39) amide every 20 min, 1-h food intake was significantly increased by 300%. These data strongly support and extend the concept of GLP-1 as a physiological regulator of food intake in the hypothalamus.  相似文献   

18.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

19.
Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands.  相似文献   

20.
Abstract : This study was designed to gain better insight into the relationship between glucagon-like peptide-1 (GLP-1) (7-36) amide and vasopressin (AVP) and oxytocin (OX). In situ hybridization histochemistry revealed colocalization of the mRNAs for GLP-1 receptor, AVP, and OX in neurons of the hypothalamic supraoptic and paraventricular nuclei. To determine whether GLP-1(7-36)amide alters AVP and/or OX release, both in vivo and in vitro experimental study designs were used. In vivo, intravenous administration of 1 μg of GLP-1(7-36)amide into the jugular vein significantly decreased plasma AVP and OX concentrations. In vitro incubation of the neurohypophysis with either 0.1 or 1 μg of GLP-1(7-36)amide did not modify the release of AVP. However, addition of 1 μg of GLP-1(7-36)amide to the incubation medium increased slightly the secretion of OX. The coexpression of GLP-1 receptor and AVP mRNAs in hypothalamic supraoptic and paraventricular nuclei gives further support to the already reported central effects of GLP-1(7-36)amide on AVP. Our findings also suggest a dual secretory response of AVP and OX to the effect of GLP-1(7-36)amide, which most likely is related to the amount and/or the route of peptide administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号