首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacteriophage T7 mRNA is polyadenylated   总被引:1,自引:0,他引:1  
  相似文献   

3.
Bacterial messenger RNA (mRNA) is not coherently polyadenylated, whereas mRNA of Eukarya can be separated from stable RNAs by virtue of polyadenylated 3'-termini. We have developed a method to isolate Escherichia coli mRNA by polyadenylating it in crude cell extracts with E. coli poly(A) polymerase I and purifying it by oligo(dT) chromatography. Differences in lacZRNA levels were similar with purified mRNA and total RNA in dot blot hydridizations for cultures grown with or without gratuitous induction of the lactose operon. More broadly, changes in gene expression upon induction were similar when cDNAs primed from mRNA or total RNA with random hexanucleotides were hydridized to DNA microarrays for the E. coli genome. Comparable signal intensities were obtained with only 1% as much oligo(dT)-purified mRNA as total RNA, and hence in vitro poly(A) tailing appears to be selective for mRNA. These and additional studies of genome-wide expression with DNA microarrays provide evidence that in vitro poly(A) tailing works universally for E. coli mRNAs.  相似文献   

4.
5.
Obtaining pure mRNA preparations from prokaryotes has been difficult, if not impossible, for want of a poly(A) tail on these messages. We have used poly(A) polymerase from yeast to effect specific polyadenylation of Escherichia coli polysomal mRNA in the presence of magnesium and manganese. The polyadenylated total mRNA, which could be subsequently purified by binding to and elution from oligo(dT) beads, had a size range of 0.4-4.0 kb. We have used hybridization to a specific plasmid-encoded gene to further confirm that the polyadenylated species represented mRNA. Withdrawal of Mg2+ from the polyadenylation reaction resulted in addition of poly(A) to 16S rRNA despite the presence of Mn2+, indicating the vital role of Mg2+ in maintaining the native structure of polysomes. Complete dissociation of polysomes into ribosomal subunits resulted in quantitative polyadenylation of both 16S and 23S rRNA species. Chromosomal lacZ gene-derived messages were quantitatively recovered in the oligo(dT)-bound fraction, as demonstrated by RT-PCR analysis. Potential advantages that accrue from the availability of pure total mRNA from prokaryotes is discussed.  相似文献   

6.
7.
8.
Bacterial messenger RNA (mRNA) is not coherently polyadenylated, whereas mRNA of Eukarya can be separated from stable RNAs by virtue of polyadenylated 3′-termini. We have developed a method to isolate Escherichia coli mRNA by polyadenylating it in crude cell extracts with E. coli poly(A) polymerase I and purifying it by oligo(dT) chromatography. Differences in lacZRNA levels were similar with purified mRNA and total RNA in dot blot hydridizations for cultures grown with or without gratuitous induction of the lactose operon. More broadly, changes in gene expression upon induction were similar when cDNAs primed from mRNA or total RNA with random hexanucleotides were hydridized to DNA microarrays for the E. coli genome. Comparable signal intensities were obtained with only 1% as much oligo(dT)-purified mRNA as total RNA, and hence in vitro poly(A) tailing appears to be selective for mRNA. These and additional studies of genome-wide expression with DNA microarrays provide evidence that in vitro poly(A) tailing works universally for E. coli mRNAs.  相似文献   

9.
Studies were performed with duck immature red blood cells to identify and characterize the globin mRNA sequences in nuclear RNA. Annealing of 3H-globin cDNA to unlabeled nuclear RNA has identified three distinct size classes of nuclear RNA molecules containing globin mRNA sequences. The largest size class contained 1–2% of total nuclear globin mRNA sequences and sedimented through 85% formamide-sucrose gradients at the same rate as 28S ribosomal RNA. Chromatography on oligo(dT)-cellulose indicated that most of these molecules are not polyadenylated. The bulk of nuclear globin mRNA sequences (70%) was contained in polyadenylated RNA molecules which sedimented at 16.5S. The remainder of nuclear globin mRNA sequences (~30%) was detected in molecules sedimenting at 10S (the position of cytoplasmic globin mRNA).To determine whether a precursor-product relationship exists between these nuclear molecules and cytoplasmic globin mRNA, pulse-label and chase experiments were performed. Labeled globin mRNA sequences were assayed by annealing to globin cDNA-cellulose. Labeled 28S nuclear globin RNA sequences could not be detected, perhaps due to technical reasons. 16.5S nuclear globin RNA was labeled and chased into cytoplasmic globin mRNA sequences. The half-life of 16.5S nuclear globin RNA was estimated to be less than 30 min. These results demonstrate that in duck immature red blood cells, globin mRNA is transcribed as a larger precursor. Furthermore, size characterization of this precursor during pulse-label and chase periods suggests that it is processed within the nucleus to 10S globin RNA.  相似文献   

10.
A method has been developed for measuring the molar concentration of RNA and the mole fraction of polyadenylated RNA. Using known mixtures of globin mRNA and rRNA composed of 20 to 85% rRNA, the molar concentration of globin mRNA, a polyadenylated species, was determined in 45 min, with the consumption of less than 100 ng of total RNA. The technique is particularly well suited for determining the molar concentration of poly(A)+ RNA after chromatographic enrichment in columns of oligo(dT)-cellulose or poly(U)-Sepharose. The method makes possible the adoption of a molar standard.  相似文献   

11.
Poly(A) messenger RNA is generally purified from total RNA using oligo(dT) cellulose affinity chromatography or centrifugation through spin columns. We present a new method for rapid purification of poly(A) mRNA using oligo(dT) probes attached to superparamagnetic beads. By magnetic separation, washing, and elution, pure mRNA is obtained from living cells within 10 minutes. This procedure works for crude RNA preparations or cell lysates that would otherwise clog standard oligo(dT) cellulose column systems. The present method reduces the risk of degradation, is highly efficient, and can easily be scaled up or down.  相似文献   

12.
13.
Investigations were conducted to quantitate polyadenylic acid and estimate the synthesis of polyadenylated RNA in mouse embryos at several stages of preimplantation development. Poly(A) was assayed by molecular hybridization of total embryonic RNA with [3H]polyuridylic acid. The mean values of poly(A) in the ovulated oocytes and in the one-cell, two-cell, and blastocyst stages of the embryo were 1.9, 1.6, 0.68, and 3.8 pg, respectively. Synthesis of polyadenylated RNA was estimated by affinity chromatography of [3H]uridine-labeled embryo RNA on oligo(dT)-cellulose. The proportions of newly synthesized RNA bound by oligo(dT)-cellulose at the 2-cell, 8- to 16-cell, and blastocyst stages were 6.7, 3.5, and 3.3%, respectively. These results suggest that significant quantities of maternal mRNA are present during early development of the mouse, but that polyadenylation of RNA transcribed from the embryonic genome occurs as early as the two-cell stage.  相似文献   

14.
15.
The extent to which the poly(A)(+)RNA sequence complexity from sea-urchin embryos is also represented in poly(A)(-)RNA was determined by cDNA cross-hybridization. Eighty percent or more of both the cytoplasmic poly(A)(+)RNA and polysomal poly(A)(+)RNA sequences appeared in a poly(A)(-) form. In both cases, the cellular concentrations of the poly(A)(-)RNA molecules that reacted with the cDNA were similar to the concentrations of the homologous poly(A)(+) sequences. Additionally, few, if any, abundant poly(A)(+)mRNA molecules were quantitatively discriminated by polyadenylation, since the abundant poly(A)(+)sequences were also abundant in poly(A)(-)RNA. Neither degradation nor inefficient binding to oligo (dT)-cellulose can account for the observed cross-reactivity. These data indicate that, in sea-urchin embryos, the poly(A) does not regulate the utilization of mRNA by demarcating an mRNA subset that is specifically and completely polyadenylated.  相似文献   

16.
A method is presented that facilitates the identification of cDNA clones corresponding to the polyadenylated 3′ end of mRNA. It is based on the use of a poly dT probe that is synthesized by homopolymer extension of commercially available oligo dT. The method is shown to work in Southern blot analysis of plasmid preparations and in situ with colonies.  相似文献   

17.
18.
Phenol extracted RNA preparations from highly purified nuclei and polysomes of goat brain were fractionated by chromatography on oligo (dT)-cellulose and analyzed by electrophoresis on agarose-acrylamide composite gels. The electrophoretic profile of the polysomal polyadenylated RNA fraction showed a major band with a molecular weight of about 0.62 × 106, which corresponds to the size of the tubulin mRNA. The nuclear polyadenylated RNA fraction also displayed a single major band, with an estimated molecular weight of 0.76 × 106, which appears to be a potential precursor of tubulin mRNA.  相似文献   

19.
20.
Polyadenylated RNA has been isolated from control and interferon-treated HL-60 cells by centrifugation through cesium chloride and oligo(dT)-cellulose column chromatography. The affinity column-purified RNA is poorly translated in the mRNA-dependent rabbit reticulocyte lysates but is an excellent template for in vitro protein synthesis using the wheat germ cell extracts. The discrepancy in the efficiency of HL-60 mRNA utilization in the two commonly used cell-free protein synthesizing systems is attributable to an inhibitory component present in the polyadenylated RNA. This contaminant is most likely double-stranded RNA based on (i) the ability of 2-aminopurine (3-5 mM) or high concentrations of penicillium chrysogenum double-stranded RNA (10-15 micrograms/ml) to overcome the inhibition exerted by the component, and (ii) the ability of the component to promote the enzymatic conversion of ATP into 2-5A by the highly purified rabbit reticulocyte 2-5A synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号