首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteasomes are the major source for the generation of peptides bound by MHC class I molecules. To study the functional relevance of the IFN-gamma-inducible proteasome subunits low molecular mass protein 2 (LMP2), LMP7, and mouse embryonal cell (MEC) ligand 1 in Ag processing and concomitantly that of immunoproteasomes, we established the tetracycline-regulated mouse cell line MEC217, allowing the titrable formation of immunoproteasomes. Infection of MEC217 cells with Adenovirus type 5 (Ad5) and analysis of Ag presentation with Ad5-specific CTL showed that cells containing immunoproteasomes processed the viral early 1B protein (E1B)-derived epitope E1B192-200 with increased efficiency, thus allowing a faster detection of viral entry in induced cells. Importantly, optimal CTL activation was already achieved at submaximal immunosubunit expression. In contrast, digestion of E1B-polypeptide with purified proteasomes in vitro yielded E1B192-200 at quantities that were proportional to the relative contents of immunosubunits. Our data provide evidence that the IFN-gamma-inducible proteasome subunits, when present at relatively low levels as at initial stages of infection, already increase the efficiency of antigenic peptide generation and thereby enhance MHC class I Ag processing in infected cells.  相似文献   

2.
Generation of the HLA-A0201 (A2) influenza Matrix 58-66 epitope contained within the full-length Matrix protein is impaired in cells lacking the proteasome subunits low molecular protein 2 (LMP2) and LMP7. This Ag presentation block can be relieved by transfecting the wild-type LMP7 cDNA into LMP7-deficient cells. A mutated form of LMP7, lacking the two threonines at the catalytic active site, was equally capable of relieving the block in presentation of the influenza Matrix A2 epitope. These observations were extended by analyzing whether modification of the influenza Matrix protein could overcome the block in presentation of the A2 Matrix epitope. Expression of either a rapidly degraded form of the full-length Matrix protein or shorter Matrix fragments led to an efficient presentation of the A2 influenza Matrix epitope by LMP7-negative cells. These findings demonstrate two main points: 1) LMP7 incorporation into the proteasome is of greater importance for the generation of the influenza A2 Matrix epitope than the presence of the LMP7's catalytic site; and 2) the interplay between cytosolic proteases and stability of target proteins is of importance in optimization of Ag presentation. These observations may have relevance to the immunodominance of tumor and viral epitopes and raise the possibility that generation of shorter protein fragments could be a mechanism to ensure optimal Ag presentation by cells expressing low levels of LMP7.  相似文献   

3.
Role of immunoproteasomes in cross-presentation   总被引:3,自引:0,他引:3  
The evidence that proteasomes are involved in the processing of cross-presented proteins is indirect and based on the in vitro use of proteasome inhibitors. It remains, therefore, unclear whether cross-presentation of MHC class I peptide epitopes can occur entirely within phagolysosomes or whether it requires proteasome degradation. To address this question, we studied in vivo cross-presentation of an immunoproteasome-dependent epitope. First, we demonstrated that generation of the immunodominant HY Uty(246-254) epitope is LMP7 dependent, resulting in the lack of rejection of male LMP7-deficient (LMP7(-/-)) skin grafts by female LMP7(-/-) mice. Second, we ruled out an altered Uty(246-254)-specific T cell repertoire in LMP7(-/-) female mice and demonstrated efficient Uty(246-254) presentation by re-expressing LMP7 in male LMP7(-/-) cells. Finally, we observed that LMP7 expression significantly enhanced cross-priming of Uty(246-254)-specific T cells in vivo. The observations that male skin grafts are not rejected by LMP7(-/-) female mice and that presentation of a proteasome-dependent peptide is not efficiently rescued by alternative cross-presentation pathways provide strong evidence that proteasomes play an important role in cross-priming events.  相似文献   

4.
The complete inhibition of proteasome activities interferes with the production of most MHC class I peptide ligands as well as with cellular proliferation and survival. In this study we have investigated how partial and selective inhibition of the chymotrypsin-like activity of the proteasome by the proteasome inhibitors lactacystin or epoxomicin would affect Ag presentation. At 0.5-1 microM lactacystin, the presentation of the lymphocytic choriomeningitis virus-derived epitopes NP118 and GP33 and the mouse CMV epitope pp89-168 were reduced and were further diminished in a dose-dependent manner with increasing concentrations. Presentation of the lymphocytic choriomeningitis virus-derived epitope GP276, in contrast, was markedly enhanced at low, but abrogated at higher, concentrations of either lactacystin or epoxomicin. The inhibitor-mediated effects were thus epitope specific and did not correlate with the degradation rates of the involved viral proteins. Although neither apoptosis induction nor interference with cellular proliferation was observed at 0.5-1 microM lactacystin in vivo, this concentration was sufficient to alter the fragmentation of polypeptides by the 20S proteasome in vitro. Our results indicate that partial and selective inhibition of proteasome activity in vivo is a valid approach to modulate Ag presentation, with potential applications for the treatment of autoimmune diseases and the prevention of transplant rejection.  相似文献   

5.
Major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) clear respiratory tract infections caused by the pneumovirus respiratory syncytial virus (RSV) and also mediate vaccine-induced pulmonary injury. Herein we examined the mechanism for RSV-induced MHC class I presentation. Like infectious viruses, conditioned medium from RSV-infected cells (RSV-CM) induces naive cells to coordinately express a gene cluster encoding the transporter associated with antigen presentation 1 (TAP1) and low molecular mass protein (LMP) 2 and LMP7. Neutralization of RSV-CM with antibodies to interferon (IFN)-beta largely blocked TAP1/LMP2/LMP7 expression, whereas anti-interleukin-1 antibodies were without effect, and recombinant IFN-beta increased TAP1/LMP2/LMP7 expression to levels produced by RSV-CM. LMP2, LMP7, and TAP1 expression were required for MHC class I upregulation because the irreversible proteasome inhibitor lactacystin or transfection with a competitive TAP1 inhibitor blocked inducible class I expression. We conclude that RSV infection coordinately increases MHC class I expression and proteasome activity through the paracrine action of IFN-beta to induce expression of the TAP1/LMP2/LMP7 locus, an event that may be important in the initiation of CTL-mediated lung injury.  相似文献   

6.
CD8 T cells resolve intracellular pathogens by responding to pathogen-derived peptides that are presented on the cell surface by MHC class I molecules. Although most pathogens encode a large variety of antigenic peptides, protective CD8 T cell responses target usually only a few of these. To determine the mechanism by which the IFN-gamma-inducible proteasome (immuno) subunits enhance the ability of specific pathogen-derived peptides to elicit CD8 T cell responses, we generated a recombinant Listeria monocytogenes strain (rLM-E1) that secretes a model Ag encompassing the immunoproteasome-dependent E1B(192-200) and immunoproteasome-independent E1A(234-243) epitope. Analyses of Ag presentation showed that infected gene-deficient professional APCs, lacking the immunosubunits LMP7/ibeta5 and MECL-1/ibeta2, processed and presented the rLM-E1-derived E1B(192-200) epitope but with delayed kinetics. E1A epitope processing proceeded normally in these cells. Accordingly, infected gene-deficient mice failed to respond to the otherwise immunodominant E1B(192-200) epitope but mounted normal CD8 T cell responses to E1A(234-243) which was processed by the same professional APCs, from the same rLM-E1 Ag. The inability of gene-deficient mice to respond to E1B(192-200) was not explained by insufficient quantities of antigenic peptide, as splenic APC of 36-h-infected gene-deficient mice that presented the two E1 epitopes at steady state levels elicited responses to both E1B(192-200) and E1A(234-243) when transferred into LMP7+MECL-1-deficient mice. Taken together, our findings indicate that not absolute epitope quantities but early Ag-processing kinetics determine the ability of pathogen-derived peptides to elicit CD8 T cell responses, which is of importance for rational T cell vaccine design.  相似文献   

7.
The cytotoxic T cell response to pathogens is usually directed against a few immunodominant epitopes, while other potential epitopes are either subdominant or not used at all. In C57BL/6 mice, the acute cytotoxic T cell response against lymphocytic choriomeningitis virus is directed against immunodominant epitopes derived from the glycoprotein (gp33-41) and the nucleoprotein (NP396-404), while the gp276-286 epitope remains subdominant. Despite extensive investigations, the reason for this hierarchy between epitopes is not clear. In this study, we show that the treatment of cells with IFN-gamma enhanced the presentation of gp33-41, whereas presentation of the gp276-286 epitope from the same glycoprotein was markedly reduced. Because proteasomes are crucially involved in epitope generation and because IFN-gamma treatment in vitro and lymphocytic choriomeningitis virus infection in vivo lead to a gradual replacement of constitutive proteasomes by immunoproteasomes, we investigated the role of proteasome composition on epitope hierarchy. Overexpression of the active site subunits of immunoproteasomes LMP2, LMP7, and MECL-1 as well as overexpression of LMP2 alone suppressed the presentation of the gp276-286 epitope. The ability to generate gp276-286-specific CTLs was enhanced in LMP2- and LMP7-deficient mice, and macrophages from these mice showed an elevated presentation of this epitope. In vitro digests demonstrated that fragmentation by immunoproteasomes, but not constitutive proteasomes led to a preferential destruction of the gp276 epitope. Taken together, we show that LMP2 and LMP7 can at least in part determine subdominance and shape the epitope hierarchy of CTL responses in vivo.  相似文献   

8.
9.
For most nascent glycoprotein Ags, the MHC class I-restricted processing pathway begins in the endoplasmic reticulum (ER). From this location, they are translocated to the cytosol for degradation by the proteasome. A reasonable assumption is that processing of exocytic Ags is less efficient than that of cytosolic Ags, due to the requirement for additional handling, but that the processing pathways for the two types of proteins are otherwise similar. To test this, we compared the presentation of three epitopes within influenza nucleoprotein (NP) when this Ag is targeted to the cytosol or the ER. Surprisingly, under conditions of limited Ag expression, presentation of two proteasome-dependent epitopes is comparable when NP is targeted to the ER while presentation of a third is negatively impacted. Furthermore, presentation of the third epitope is unaffected by the addition of proteasome inhibitor when cytosolic NP is expressed but is significantly enhanced when exocytic NP is expressed. These results indicate that delivery of Ag to the ER need not preclude efficient presentation and that processing of cytosolic and ER-targeted Ag is qualitatively distinct.  相似文献   

10.
11.
Knowledge of the events governing Ag processing and epitope selection within APC is key to the development of novel immunotherapeutic strategies for infectious diseases, cancer, and autoimmunity. The influence of disulfides and Ag reduction on the hierarchy of epitope presentation via MHC class II molecules was investigated through studies of a self Ag, IgG kappa. HLA-DR4(+) B cells preferentially present an immunodominant IgG-derived epitope, kappaI, relative to a subdominant kappaII peptide. kappaI contains a cysteine masked within the native Ag via an intrachain disulfide, the latter of which is reduced during Ag processing. Mutagenesis of this cysteine as well as others within kappa minimally perturbed the abundance and overall conformation of IgG. Yet, disruptions in disulfide bonding within this Ag influenced the selective display of class II-restricted dominant and subdominant T cell epitopes. Presentation of the kappaI epitope from both native and variant IgG was dependent upon cellular expression of IFN-gamma-inducible lysosomal thiol reductase. These studies indicate that disulfide bonds regulate Ag processing both locally and at distant sites, thus influencing epitope selection within the class II pathway.  相似文献   

12.
The proteasome is responsible for the generation of most epitopes presented on MHC class I molecules. Treatment of cells with IFN-γ leads to the replacement of the constitutive catalytic subunits β1, β2, and β5 by the inducible subunits low molecular mass polypeptide (LMP) 2 (β1i), multicatalytic endopeptidase complex-like-1 (β2i), and LMP7 (β5i), respectively. The incorporation of these subunits is required for the production of numerous MHC class I-restricted T cell epitopes. The structural features rather than the proteolytic activity of an immunoproteasome subunit are needed for the generation of some epitopes, but the underlying mechanisms have remained elusive. Experiments with LMP2-deficient splenocytes revealed that the generation of the male HY-derived CTL-epitope UTY(246-254) was dependent on LMP2. Treatment of male splenocytes with an LMP2-selective inhibitor did not reduce UTY(246-254) presentation, whereas silencing of β1 activity increased presentation of UTY(246-254). In vitro degradation experiments showed that the caspase-like activity of β1 was responsible for the destruction of this CTL epitope, whereas it was preserved when LMP2 replaced β1. Moreover, inhibition of the β5 subunit rescued the presentation of the influenza matrix 58-66 epitope, thus suggesting that a similar mechanism can apply to the exchange of β5 by LMP7. Taken together, our data provide a rationale why the structural property of an immunoproteasome subunit rather than its activity is required for the generation of a CTL epitope.  相似文献   

13.
Groettrup M  Khan S  Schwarz K  Schmidtke G 《Biochimie》2001,83(3-4):367-372
When cells are stimulated with the cytokines IFN-gamma or TNF-alpha, the synthesis of three proteasome subunits LMP2 (beta1i), LMP7 (beta5i), and MECL-1 (beta2i) is induced. These subunits replace the three subunits delta (beta1), MB1 (beta5), and Z (beta2), which bear the catalytically active sites of the proteasome, during proteasome neosynthesis. The cytokine-induced exchanges of three active site subunits of a complex protease is unprecedented in biology and one may expect a strong functional driving force for this system to evolve. These cytokine-induced replacements of proteasome subunits are believed to favour the production of peptide ligands of major histocompatibility complex (MHC) class I molecules for the stimulation of cytotoxic T cells. Although the peptide production by constitutive proteasomes is able to maintain peptide-dependent MHC class I cell surface expression in the absence of LMP2 and LMP7, these subunits were recently shown to be pivotal for the generation or destruction of several unique epitopes. In this review we discuss the recent data on LMP2/LMP7/MECL-1-dependent epitope generation and the functions of each of these subunit exchanges. We propose that these subunit exchanges have evolved not only to optimize class I peptide loading but also to generate LMP2/LMP7/MECL-1-dependent epitopes in inflammatory sites which are not proteolytically generated in uninflamed tissues. This difference in epitope generation may serve to better stimulate T cells in the sites of an ongoing immune response and to avoid autoimmunity in uninflamed tissues.  相似文献   

14.
Intracellular bacteria can reside in a vacuolar compartment, or they can escape the vacuole and become free living in the cytoplasm. The presentation of Ag by class I MHC molecules has been defined primarily for Ag present in the cytoplasm. It was therefore thought that Ags from bacteria that remain in a vacuole would not be presented by MHC class I molecules. Although some studies have provided data to support this idea, it is not necessarily true for all intracellular bacteria. For example, we have previously demonstrated that an epitope from the p60 protein secreted by LLO- Listeria monocytogenes, which does not reside in the cytoplasm, can be presented by MHC class I molecules to a T cell clone specific for the epitope, p60217-225. We have further examined the route by which Ag secreted by LLO- L. monocytogenes is presented by MHC class I molecules. Using pharmacological inhibitors, we demonstrate that MHC class I presentation of the p60 epitope derived from by LLO- L. monocytogenes requires phagolysosome fusion and processing by the proteasome. Lysosomal cathepsins, however, are not required for processing of the p60 epitope. Similarly, processing of the AttM epitope, secreted by LLO- L. monocytogenes and presented by H2-M3, also requires phagolysosome fusion and cleavage by the proteasome. Thus, p60 and AttM secreted by LLO- L. monocytogenes are processed via the classical class I pathway for presentation by MHC class I molecules.  相似文献   

15.
Presentation and CD4(+) T cell responses to Ag in the context of MHC class II molecules require processing of native proteins into short peptide fragments. Within this pathway, IFN-gamma-inducible lysosomal thiol reductase (GILT) functions to catalyze thiol bond reduction, thus unfolding native protein Ag and facilitating further processing via cellular proteases. In contrast with professional APCs such as B cells, class II-positive human melanomas expressed relatively little to no GILT protein or mRNA. Tumor cell GILT expression was partially restored with IFN-gamma treatment but unlike other genes required for class II Ag presentation, GILT was not regulated by CIITA. Rather, studies revealed STAT1 plays a direct role in IFN-gamma-inducible GILT expression. These results define a molecular mechanism for the uncoupled regulation of MHC class II genes and the processing enzyme GILT in human melanomas.  相似文献   

16.
K Früh  M Gossen  K Wang  H Bujard  P A Peterson    Y Yang 《The EMBO journal》1994,13(14):3236-3244
The degradation of cytoplasmic antigens to peptides presented by class I MHC molecules is thought to be mediated by the ubiquitin/proteasome pathway. Support for this view came from our observation that the subunit composition of proteasomes can be changed by interferon-gamma (IFN-gamma) treatment. Thereby two subunits, LMP2 and LMP7, which are encoded in the MHC class II region, are incorporated into the proteasomal complex, whereas other subunits disappear. In the experiments reported in this communication we studied the subunit changes occurring in cell lines where the expression of LMP2 or LMP7 can be regulated individually either by IFN-gamma induction or by applying a new system to control the expression of transfected LMPs. In both situations LMP2 induction leads exclusively to the disappearance of housekeeping subunit 2, whereas LMP7 affects only subunit 10. Subunit 2 was found to be 76% homologous to LMP2. Since incorporation of LMP2 into the proteasomal complex prevents processing of the subunit 2 precursor, we conclude that LMP2 displaces subunit 2 during assembly. Subunit displacement is most likely a general mechanism to modulate the catalytic activity of the proteasomal complex without changing its structure. Furthermore, the controlled incorporation of transfected subunits into the complex offers a new approach to study proteasome function in vivo.  相似文献   

17.
The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.  相似文献   

18.
Immunoproteasomes comprise a specialized subset of proteasomes that is defined by the presence of three catalytic immunosubunits: LMP2, MECL-1 (LMP10), and LMP7. Proteasomes in general serve many cellular functions through protein degradation, whereas the specific function of immunoproteasomes has been thought to be largely, if not exclusively, optimization of MHC class I Ag processing. In this report, we demonstrate that T cells from double knockout mice lacking two of the immunosubunits, MECL-1 and LMP7, hyperproliferate in vitro in response to various polyclonal mitogens. We observe hyperproliferation of both CD4(+) and CD8(+) T cell subsets and demonstrate accelerated cell cycling. We do not observe hyperproliferation of T cells lacking only one of these subunits, and thus hyperproliferation is independent of either reduced MHC class I expression in LMP7(-/-) mice or reduced CD8(+) T cell numbers in MECL-1(-/-) mice. We observe both of these latter two phenotypes in MECL-1/LMP7(-/-) mice, which indicates that they also are independent of each other. Finally, we provide evidence of in vivo T cell dysfunction by demonstrating increased numbers of central memory phenotype CD8(+) T cells in MECL-1/LMP7(-/-) mice. In summary, this novel phenotype of hyperproliferation of T cells lacking both MECL-1 and LMP7 implicates a specific role for immunoproteasomes in T cell proliferation that is not obviously connected to MHC class I Ag processing.  相似文献   

19.
Immune proteasomes in thymus are involved in processing of self-antigens, which are presented by MHC class I molecules for rejection of autoreactive thymocytes in adults and probably in perinatal rats. The distribution of immune proteasome subunits LMP7 and LMP2 in thymic cells have been investigated during rat perinatal ontogenesis. Double immunofluorescent labeling revealed LMP7 and LMP2 in thymic epithelial and dendritic cells, as well as in CD68 positive cells - macrophages, monocytes - at all developmental stages. LMP2 and LMP7 were also detected by flow cytometry in almost all thymic CD90 lymphocytes through pre- and postnatal ontogenesis. Our results demonstrate that the immune proteasomes are expressed in all types of thymic antigen presenting cells during perinatal ontogenesis, suggesting the establishment of the negative selection in the thymus at the end of fetal life. The observation of the immune proteasome expression in T lymphocytes suggests their role in thymocyte differentiation besides antigen processing in thymus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号