首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
4.
In contrast to the extensive studies on the role of transforming growth factor-beta (TGF-beta) in regulating cell proliferation, differentiation, and apoptosis over the past decade, relatively little is known about the exact role of TGF-beta signaling in regulating host response in infectious diseases. Most of the recent studies have suggested that TGF-beta inhibits macrophage activation during infections with pathogens such as Trypanosoma cruzi and Leishmania, thereby favoring virulence. In certain situations, however, there is also evidence that TGF-beta has been correlated with enhanced resistance to microbes such as Candida albicans, thus benefiting the host. Despite these distinct observations that mainly focused on macrophages, little is known about how TGF-beta regulates host primary innate defensive responses, such as up-regulation of mucin, in the airway epithelial cells. Moreover, how the TGF-beta-Smad signaling pathway negatively regulates p38 mitogen-activated protein kinase (MAPK), a key pathway mediating host response to bacteria, still remains largely unknown. Here we show that nontypeable Haemophilus influenzae, a major human bacterial pathogen of otitis media and chronic obstructive pulmonary diseases, strongly induces up-regulation of MUC5AC mucin via activation of the Toll-like receptor 2-MyD88-dependent p38 path-way. Activation of TGF-beta-Smad signaling, however, leads to down-regulation of p38 by inducing MAPK phophatase-1, thereby acting as a negative regulator for MUC5AC induction. These studies may bring new insights into the novel role of TGF-beta signaling in attenuating host primary innate defensive responses and enhance our understanding of the signaling mechanism underlying the cross-talk between TGF-beta-Smad signaling pathway and the p38 MAPK pathway.  相似文献   

5.
6.
7.
Jono H  Lim JH  Xu H  Li JD 《PloS one》2012,7(1):e31049
CARD-containing MAGUK protein 1 (CARMA1) plays a crucial role in regulating adaptive immune responses upon T-cell receptor (TCR) activation in T cells. Its role in regulating host mucosal innate immune response such as upregulation of mucin remains unknown. Here we show that CARMA1 acts as a key signaling mediator for synergistic upregulation of MUC5AC mucin by bacterium nontypeable Haemophilus influenzae (NTHi) and phorbol ester PMA in respiratory epithelial cells. NTHi-induced TLR-dependent TRAF6-MKK3-p38 MAPK signaling pathway synergizes with PKCθ-MEK-ERK signaling pathway. CARMA1 plays a crucial role in mediating this synergistic effect via TRAF6, thereby resulting in synergistic upregulation of MUC5AC mucin. Thus our study unveils a novel role for CARMA1 in mediating host mucosal innate immune response.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The transforming growth factor beta (TGF-beta) pathway represents an important signaling pathway involved in the regulation of diverse biological processes, including cell proliferation, differentiation, and apoptosis. Despite the known role of TGF-betaR-mediated signaling in suppressing immune response, its role in regulating human Toll-like receptors (TLRs), key host defense receptors that recognize invading bacterial pathogens, however, remains unknown. Here, we show for the first time that TGF-betaR-Smad3/4 signaling pathway acts as a positive regulator for TLR2 induction by bacterium nontypeable Hemophilus influenzae (NTHi) in vitro and in vivo. The positive regulation of TLR2 induction by TGF-betaR is mediated via a dual mechanism involving distinct signaling pathways. One mechanism involves functional cooperation between the TGF-betaR-Smad3/4 pathway and NF-kappaB pathway. Another involves MAP kinase phosphatase 1 (MKP-1)-dependent inhibition of p38 MAPK, a known negative regulator for TLR2 induction. Moreover, we showed that TbetaR-mediated signaling is probably activated by NTHi-derived TGF-beta mimicry molecule via an autocrine-independent mechanism. Thus, our study provides new insights into the role of TGF-beta signaling in positively regulating host defense response by tightly controlling the expression level of TLR2 during bacterial infections and may lead to new therapeutic strategies for modulating host defense and inflammatory response.  相似文献   

16.
17.
18.
19.
In review of the past studies on NF-kappaB regulation, most of them have focused on investigating how NF-kappaB is activated by a single inducer at a time. Given the fact that, in mixed bacterial infections in vivo, multiple inflammation inducers, including both nontypeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae, are present simultaneously, a key issue that has yet to be addressed is whether NTHi and S. pneumoniae simultaneously activate NF-kappaB and the subsequent inflammatory response in a synergistic manner. Here, we show that NTHi and S. pneumoniae synergistically induce NF-kappaB-dependent inflammatory response via activation of multiple signaling pathways in vitro and in vivo. The classical IKKbeta-IkappaBalpha and p38 MAPK pathways are involved in synergistic activation of NF-kappaB via two distinct mechanisms, p65 nuclear translocation-dependent and -independent mechanisms. Moreover, casein kinase 2 (CK2) is involved in synergistic induction of NF-kappaB via a mechanism dependent on phosphorylation of p65 at both Ser536 and Ser276 sites. These studies bring new insights into the molecular mechanisms underlying the NF-kappaB-dependent inflammatory response in polymicrobial infections and may lead to development of novel therapeutic strategies for modulating inflammation in mixed infections for patients with otitis media and chronic obstructive pulmonary diseases.  相似文献   

20.
MUC1 mucin is a receptor-like glycoprotein expressed abundantly in various cancer cell lines as well as in glandular secretory epithelial cells, including airway surface epithelial cells. The role of this cell surface mucin in the airway is not known. In an attempt to understand the signaling mechanism of MUC1 mucin, we established a stable cell line from COS-7 cells expressing a chimeric receptor consisting of the extracellular and transmembrane domains of CD8 and the cytoplasmic (CT) domain of MUC1 mucin (CD8/MUC1 cells). We previously observed that treatment of these cells with anti-CD8 antibody resulted in tyrosine phosphorylation of the CT domain of the chimera. Here we report that treatment of CD8/MUC1 cells with anti-CD8 resulted in activation of extracellular signal-regulated kinase (ERK) 2 as assessed by immunoblotting, kinase assay, and immunocytochemistry. The activation of ERK2 was completely blocked either by a dominant negative Ras mutant or in the presence of a mitogen-activated protein kinase kinase (MEK) inhibitor. We conclude that tyrosine phosphorylation of the CT domain of MUC1 mucin leads to activation of a mitogen-activated protein kinase pathway through the Ras-MEK-ERK2 pathway. Combined with the existing data by others, it is suggested that one of the roles of MUC1 mucin may be regulation of cell growth and differentiation via a common signaling pathway, namely the Grb2-Sos-Ras-MEK-ERK2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号