首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The voltage-dependent anion channels (VDACs), known as a major group of outer mitochondrial membrane proteins, are present in all eukaryotic species. In mammalian cells, they have been established as a key player in mitochondrial metabolism and apoptosis regulation. By contrast, little is known about the function of plant VDACs. Recently, we performed functional analysis of all VDAC gene members in Arabidopsis thaliana, and revealed that each AtVDAC member has a specialized function. Especially, in spite of similar subcellular localization and expression profiling of AtVDAC2 and AtVDAC4, both the T-DNA insertion knockout mutants of them, vdac2–2 and vdac4–2, showed severe growth retardation. These results suggest that AtVDAC2 and AtVDAC4 proteins clearly have distinct functions. Here, we introduced the AtVDAC2 gene into the vdac2–2 mutant, and demonstrated that the miniature phenotype of vdac2–2 plant is abolished by AtVDAC2 expression.  相似文献   

2.
Mutations in the TUMOROUS SHOOT DEVELOPMENT2 (TSD2) gene reduce cell adhesion, and in strongly affected individuals cause non-coordinated shoot development that leads to disorganized tumor-like growth in vitro. tsd2 mutants showed increased activity of axial meristems, reduced root growth and enhanced de-etiolation. The expression domains of the shoot meristem marker genes KNAT1 and KNAT2 were enlarged in the mutant background. Soil-grown tsd2 mutants were dwarfed, but overall showed morphology similar to that of the wild-type (WT). The TSD2 gene was identified by map-based cloning. It encodes a novel 684 amino acid polypeptide containing a single membrane-spanning domain in the N-terminal part and S-adenosyl-l-methionine binding and methyltransferase domains in the C-terminal part. Expression of a TSD2:GUS reporter gene was detected mainly in meristems and young tissues. A green fluorescent protein-tagged TSD2 protein localized to the Golgi apparatus. The cell-adhesion defects indicated altered pectin properties, and we hypothesize that TSD2 acts as a pectin methyltransferase. However, analyses of the cell-wall composition revealed no significant differences of the monosaccharide composition, the uronic acid content and the overall degree of pectin methylesterification between tsd2 and WT. The findings support a function of TSD2 as a methyltransferase, with an essential role in cell adhesion and coordinated plant development.  相似文献   

3.
Ribosomal proteins are integral to ribosome biogenesis, and function in protein synthesis. In higher eukaryotes, loss of cytoplasmic ribosomal proteins results in a reduced growth rate as well as developmental defects. To what extent and how ribosomal proteins affect development is currently not known. Here we describe a semi-dominant mutation in the cytoplasmic ribosomal protein gene RPL27aC that affects multiple aspects of plant shoot development, including leaf patterning, inflorescence and floral meristem function, and seed set. In the embryo, RPL27aC is required to maintain the growth rate and for the transition from radial to bilateral symmetry associated with initiation of cotyledons. rpl27ac-1d embryos undergo stereotypical patterning to establish a globular embryo. However, a temporal delay in initiation and outgrowth of cotyledon primordia leads to development of an enlarged globular embryo prior to apical domain patterning. Defects in embryo development are coincident with tissue-specific ectopic expression of the shoot meristem genes SHOOT MERISTEMLESS (STM) and CUP-SHAPED COTYLEDON2 (CUC2), in addition to delayed expression of the abaxial gene FILAMENTOUS FLOWER (FIL) and mis-regulation of the auxin efflux effector PIN-FORMED1 (PIN1). Genetic interactions with other ribosomal protein mutants indicate that RPL27aC is a component of the ribosome. We propose that RPL27aC regulates discrete developmental events by controlling spatial and temporal expression of developmental patterning genes via an as yet undefined process involving the ribosome.  相似文献   

4.
5.
6.
Cadaverine, a polyamine, has been linked to modification of root growth architecture and response to environmental stresses in plants. However, the molecular mechanisms that govern the regulation of root growth by cadaverine are largely unexplored. Here we conducted a forward genetic screen and isolated a mutation, cadaverine hypersensitive 3 (cdh3), which resulted in increased root-growth sensitivity to cadaverine, but not other polyamines. This mutation affects the BIO3-BIO1 biotin biosynthesis gene. Exogenous supply of biotin and a pathway intermediate downstream of BIO1, 7,8-diaminopelargonic acid, suppressed this cadaverine sensitivity phenotype. An in vitro enzyme assay showed cadaverine inhibits the BIO3-BIO1 activity. Furthermore, cadaverine-treated seedlings displayed reduced biotinylation of Biotin Carboxyl Carrier Protein 1 of the acetyl-coenzyme A carboxylase complex involved in de novo fatty acid biosynthesis, resulting in decreased accumulation of triacylglycerides. Taken together, these results revealed an unexpected role of cadaverine in the regulation of biotin biosynthesis, which leads to modulation of primary root growth of plants.  相似文献   

7.
Phosphatidylserine (PS) has many important biological roles, but little is known about its role in plants, partly because of its low abundance. We show here that PS is enriched in Arabidopsis floral tissues and that genetic disruption of PS biosynthesis decreased heterozygote fertility due to inhibition of pollen maturation. At1g15110, designated PSS1, encodes a base-exchange-type PS synthase. Escherichia coli cells expressing PSS1 accumulated PS in the presence of l-serine at 23°C. Promoter-GUS assays showed PSS1 expression in developing anther pollen and tapetum. A few seeds with pss1-1 and pss1-2 knockout alleles escaped embryonic lethality but developed into sterile dwarf mutant plants. These plants contained no PS, verifying that PSS1 is essential for PS biosynthesis. Reciprocal crossing revealed reduced pss1 transmission via male gametophytes, predicting a rate of 61.6%pss1-1 pollen defects in PSS1/pss1-1 plants. Alexander's staining of inseparable qrt1-1 PSS1/pss1-1 quartets revealed a rate of 42% having three or four dead pollen grains, suggesting sporophytic pss1-1 cell death effects. Analysis with the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) showed that all tetrads from PSS1/pss1-1 anthers retain their nuclei, whereas unicellular microspores were sometimes anucleate. Transgenic Arabidopsis expressing a GFP-LactC2 construct that binds PS revealed vesicular staining in tetrads and bicellular microspores and nuclear membrane staining in unicellular microspores. Hence, distribution and/or transport of PS across membranes were dynamically regulated in pollen microspores. However, among unicellular microspores from PSS1/pss1-2 GFP-LactC2 plants, all anucleate microspores showed little GFP-LactC2 fluorescence, suggesting that pss1-2 microspores are more sensitive to sporophytic defects or show partial gametophytic defects.  相似文献   

8.
The HUA2 gene acts as a repressor of floral transition. Lesions in hua2 were identified through a study of natural variation and through two mutant screens. An allele of HUA2 from Landsberg erecta (Ler) contains a premature stop codon and acts as an enhancer of early flowering 4 (elf4) mutants. hua2 single mutants, in the absence of the elf4 lesion, flower earlier than wild type under short days. hua2 mutations partially suppress late flowering in FRIGIDA (FRI )-containing lines, autonomous pathway mutants, and a photoperiod pathway mutant. hua2 mutations suppress late flowering by reducing the expression of several MADS genes that act as floral repressors including FLOWERING LOCUS C (FLC ) and FLOWERING LOCUS M (FLM ).  相似文献   

9.
10.
11.
12.
FRL1 is required for petal and sepal development in Arabidopsis   总被引:2,自引:0,他引:2  
A novel flower mutant, frl1 (frill 1) was isolated in Arabidopsis thaliana. The frl1 mutant has serrated petals and sepals but the other floral and vegetative organs appear to be normal. To analyse the role of the FRL1 gene, morphological, cytological and double mutant analyses were carried out. The frl1 flower had broader petals and sepals as compared with the wild-type. The distal region of frl1 petals contained fewer epidermal cells but their size was variable and generally larger than that in the wild-type. However, no significant difference was found in the basal region. Observations of the early petal development revealed that the morphology of the developing frl1 petal was normal until the middle of stage 9, but the frl1 phenotype became apparent in stages later than 10. Furthermore, larger nuclei with varied sizes were observed in the distal region of frl1 petals, but not in this region in wild-type petals. This strongly suggests that abnormal endo-reduplication had occurred. These observations indicate that the frl1 mutation affects the number of cell divisions and the subsequent cell expansion during the late stage of petal lamina formation, and that FRL1 might be maintaining the mitotic state or suppressing the transition to the endo-reduplication cycle. Double mutants with the homeotic mutants apetala3-1 and agamous showed additive phenotypes. Ectopic petals in the third whorl of fr11 ag flowers were serrated, indicating that the FRL1 gene acts in petal and sepal development in an organ-specific manner.  相似文献   

13.
14.
15.
16.
Arabinogalactan proteins (AGPs), a family of hydroxyproline-rich glycoproteins, occur throughout the plant kingdom. The lysine-rich classical AGP subfamily in Arabidopsis consists of three members, AtAGP17, 18 and 19. In this study, AtAGP19 was examined in terms of its gene expression pattern and function. AtAGP19 mRNA was abundant in stems, with moderate levels in flowers and roots and low levels in leaves. AtAGP19 promoter-controlled GUS activity was high in the vasculature of leaves, roots, stems and flowers, as well as styles and siliques. A null T-DNA knockout mutant of AtAGP19 was obtained and compared to wild-type (WT) plants. The atagp19 mutant had: (i) smaller, rounder and flatter rosette leaves, (ii) lighter-green leaves containing less chlorophyll, (iii) delayed growth, (iv) shorter hypocotyls and inflorescence stems, and (v) fewer siliques and less seed production. Several abnormalities in cell size, number, shape and packing were also observed in the mutant. Complementation of this pleiotropic mutant with the WT AtAGP19 gene restored the WT phenotypes and confirmed that AtAGP19 functions in various aspects of plant growth and development, including cell division and expansion, leaf development and reproduction.  相似文献   

17.
18.
19.
Plants maintain pools of pluripotent stem cells which allow them to constantly produce new tissues and organs. Stem cell homeostasis in shoot and root tips depends on negative regulation by ligand–receptor pairs of the CLE peptide and leucine‐rich repeat receptor‐like kinase (LRR‐RLK) families. However, regulation of the cambium, the stem cell niche required for lateral growth of shoots and roots, is poorly characterized. Here we show that the LRR‐RLK MOL1 is necessary for cambium homeostasis in Arabidopsis thaliana. By employing promoter reporter lines, we reveal that MOL1 is active in a domain that is distinct from the domain of the positively acting CLE41/PXY signaling module. In particular, we show that MOL1 acts in an opposing manner to the CLE41/PXY module and that changing the domain or level of MOL1 expression both result in disturbed cambium organization. Underlining discrete roles of MOL1 and PXY, both LRR‐RLKs are not able to replace each other when their expression domains are interchanged. Furthermore, MOL1 but not PXY is able to rescue CLV1 deficiency in the shoot apical meristem. By identifying genes mis‐expressed in mol1 mutants, we demonstrate that MOL1 represses genes associated with stress‐related ethylene and jasmonic acid hormone signaling pathways which have known roles in coordinating lateral growth of the Arabidopsis stem. Our findings provide evidence that common regulatory mechanisms in different plant stem cell niches are adapted to specific niche anatomies and emphasize the importance of a complex spatial organization of intercellular signaling cascades for a strictly bidirectional tissue production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号