首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trophic niche divergence is considered to be a major process by which species coexistence is facilitated. When studying niche segregation in lake ecosystems, we tend to view the niche on a one-dimensional pelagic-littoral axis. In reality, however, the niche use may be more complex and individual fidelity to a niche may be variable both between and within populations. In order to study this complexity, relative simple systems with few species are needed. In this paper, we study how competitor presence affects the resource use of brown trout (Salmo trutta) in 11 species-poor Faroese lakes by comparing relative abundance, stable isotope ratios and diet in multiple habitats. In the presence of three-spined sticklebacks (Gasterosteus aculeatus), a higher proportion of the trout population was found in the pelagic habitat, and trout in general relied on a more pelagic diet base as compared to trout living in allopatry or in sympatry with Arctic charr (Salvelinus alpinus). Diet analyses revealed, however, that niche-segregation may be more complex than described on a one-dimensional pelagic-littoral axis. Trout from both littoral and offshore benthic habitats had in the presence of sticklebacks a less benthic diet as compared to trout living in allopatry or in sympatry with charr. Furthermore, we found individual habitat specialization between littoral/benthic and pelagic trout in deep lakes. Hence, our findings indicate that for trout populations interspecific competition can drive shifts in both habitat and niche use, but at the same time they illustrate the complexity of the ecological niche in freshwater ecosystems.  相似文献   

2.
1. Generalist fish species are recognised as important couplers of benthic and pelagic food‐web compartments in lakes. However, interspecific niche segregation and individual specialisation may limit the potential for generalistic feeding behaviour. 2. We studied summer habitat use, stomach contents and stable isotopic compositions of the generalist feeder Arctic charr coexisting with its common resource competitor brown trout in five subarctic lakes in northern Norway to reveal population‐level and individual‐level niche plasticity. 3. Charr and trout showed partial niche segregation in all five lakes. Charr used all habitat types and a wide variety of invertebrate prey including zooplankton, whereas trout fed mainly on insects in the littoral zone. Hence, charr showed a higher potential to promote habitat and food‐web coupling compared to littoral‐dwelling trout. 4. The level of niche segregation between charr and trout and between pelagic‐caught and littoral‐caught charr depended on the prevailing patterns of interspecific and intraspecific resource competition. The two fish species had partially overlapping trophic niches in one lake where charr numerically dominated the fish community, whereas the most segregated niches occurred in lakes where trout were more abundant. 5. In general, pelagic‐caught charr had substantially narrower dietary and isotopic niches and relied less on littoral carbon sources compared to littoral‐caught conspecifics that included generalist as well as specialised benthivorous and planktivorous individuals. Despite the partially specialised planktivorous niche and thus reduced potential of pelagic‐dwelling charr to promote benthic–pelagic coupling, the isotopic compositions of both charr subpopulations suggested a significant reliance on both littoral and pelagic carbon sources in all five study lakes. 6. Our study demonstrates that both interspecific niche segregation between and individual trophic specialisation within generalist fish species can constrain food‐web coupling and alter energy mobilisation to top consumers in subarctic lakes. Nevertheless, pelagic and littoral habitats and food‐web compartments may still be highly integrated due to the potentially plastic foraging behaviour of top consumers.  相似文献   

3.
Establishment of four fish-farms during the period 1971 to 1994 in the oligotrophic lake Skogseidvatnet affected Arctic charr, Salvelinus alpinus, but not brown trout, Salmo trutta. From 1971 to 1987, an increase in mean individual size of Arctic charr was recorded, while the mean individual size of brown trout remained stable. Arctic charr were found to use deeper benthic areas than brown trout. Approximately 8% of the Arctic charr population (>26cm), were found to switch to waste food from fish-farms, resulting in a novel feeding habitat for the species. They were, however, found in gillnets distant from the fish farm cages, indicating high mobility. The habitat segregation between the two species can most likely be explained by selective differences and asymmetric competition with brown trout as the dominant species. Based on the present results, changes in the Arctic charr population may be due to increased food availability and due to a new habitat use as a waste food feeder. The reason for the brown trout population to have remained stable with respect to mean size, growth pattern and habitat use, may be due to a different diet choice than Arctic charr in this lake. Brown trout were found to feed mainly on terrestrial insects, while Arctic charr fed mainly on zooplankton and on waste food.  相似文献   

4.
Habitat utilization and the life history of browntrout Salmo trutta and Arctic charr Salvelinus alpinus were investigated in fivesympatric populations and five allopatric brown troutpopulations in Høylandet catchment, a atmosphaericlow deposition area in Mid Norway. There was asignificant inverse correlation in abundance ofepibenthic Arctic charr and brown trout in theselakes, indicating that the latter species is dominant.The largest numbers of sympatric brown trout andArctic charr were caught in epibenthic habitat. In twolakes, brown trout to some extent also occurredpelagically, while pelagic individuals of Arctic charrwere found in all five lakes. The main food items forboth epibenthic and pelagic brown trout wereterrestrial surface insects and chironomid pupae.Zooplankton was the primary food item for Arctic charrin both habitats. Although the age distribution wasvery different in the populations, neither speciesseem to suffer from recruitment failure. There was nosignificant difference in survival rates betweensympatric populations of brown trout and Arctic charr.We found a significant inverse correlation betweenepibenthic catches of brown trout and the mean weightof 4+ fish, the most abundant age group. However, ifusing weight data for three-year-old fish, no suchrelationship was found for Arctic charr. Brown troutand Arctic charr reached asymptotic lengths of197–364 mm and 259–321 mm, respectively. Both speciestypically reached sexual maturity at age 2–3, and nomaturation-induced mortality was evident. We concludethat fish populations in Høylandet lakes areregulated throughout their lifes by inter- andintraspecific competition.  相似文献   

5.
While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout‐only systems, (ii) two‐species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three‐species systems (brown trout, Arctic charr, and three‐spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor–prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout‐only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three‐species communities. Our findings revealed that the presence of a small‐sized prey fish species (stickleback) rather than a mixed competitor–prey fish species (charr) was an important factor affecting the ontogenetic niche‐shift processes of trout. The study demonstrates that community structure may modulate the ontogenetic diet trajectories of and individual niche specialization within a top predator.  相似文献   

6.
The trophic niche and parasite infection of Arctic charr (Salvelinus alpinus) were explored in two lakes with sympatric burbot (Lota lota) and two lakes without burbot in subarctic Norway. The CPUE of burbot and charr were similar in one lake, but burbot had a low population density in the other. Burbot were benthivorous in both lakes. Other co-occurring species like brown trout (Salmo trutta), Atlantic salmon parr (Salmo salar), grayling (Thymallus thymallus) and minnow (Phoxinus phoxinus) were also benthivores. At high densities, benthivorous burbot forced the whole Arctic charr population to utilise mainly the limnetic trophic niche. In contrast, at low burbot density or without burbot present, Arctic charr were primarily benthivorous in the littoral zone. Thus, a clear interactive segregation in diet was observed between Arctic charr and burbot at high burbot densities. There was also a high predation pressure from burbot on young Arctic charr along the benthic zones. The extensive use of zooplankton as prey caused a high parasite infection pressure of copepod transmitted Diphyllobothrium spp. larvae, with the potential for high negative impact on the Arctic charr population. As the benthivore trophic niche was occupied by burbot, the ecological opportunities for polymorphism with benthivorous ecotypes or morphs of Arctic charr were probably prevented. Therefore, the sympatry with burbot seems to have large ecological and evolutionary consequences for this Arctic charr population compared with neighbouring lakes where burbot is absent.  相似文献   

7.
Thingvallavatn, Iceland contains two sympatric morphotypes (benthic and limnetic) of Arctic charr Salvelinus alpinus. Each morphotype is composed of two morphs and these differ markedly in ecology, behaviour and life history. We used molecular genetic approaches to test whether (i) genetic heterogeneity exists among morphs and (ii) if morphs arose in allopatry and came into secondary contact or arose sympatrically within the lake through genetic segregation and/or phenotypic plasticity. Direct sequencing of 275 bp of the mitochondrial DNA (mtDNA) control region, mtDNA restriction fragment length polymorphisms and single locus minisatellite analyses detected insufficient variation to test our hypotheses. Analysis of multilocus minisatellite band sharing detected no significant differences between morphs within the same morphotype. However, significant differences among morphs belonging to different morphotypes suggest some genetic heterogeneity in Thingvallavatn charr. Limnetic charr from Thingvallavatn were more similar to sympatric benthic charr than to allopatric limnetics from two other Icelandic lakes. This suggests that the Thingvallavatn morphs arose sympatrically within the lake rather than in allopatry followed by secondary contact.  相似文献   

8.
This study investigated the importance of competition with brown trout Salmo trutta as a driver of the morphological and behavioural divergence of two morphs of Arctic charr Salvelinus alpinus. The morphs originated from two lakes differing in absence or presence of the competitor. The bioenergetics and behaviour of S. alpinus were quantified in replicate experimental enclosures (mean volume: 150 m(3) ) stocked with 15 S. alpinus of one morph or the other and in the absence or presence of nine S. trutta. The presence of S. trutta decreased growth rate, affected food consumption and increased activity costs in S. alpinus, but provided little support for the hypothesis that competition with S. trutta is a major driver of the divergence of the two S. alpinus morphs. Both morphs responded similarly in terms of mean growth and consumption rates per enclosure, but the association between individual morphology and growth rate reversed between allopatric and sympatric enclosures. While the activity patterns of the two morphs were unaffected by the presence of S. trutta, their swimming speed and activity rate differed. Since the profound differences in the structure of the physical habitat of the source lakes provided a more likely explanation for the difference observed among these two morphs than interspecific competition, it is hypothesized that physical habitat may sometimes be a significant driving force of the phenotypic divergence.  相似文献   

9.
The habitat and diet choice and the infection (prevalence and abundance) of trophically transmitted parasites were compared in Arctic charr and brown trout living sympatrically in two lakes in northern Norway. Arctic charr were found in all main lake habitats, whereas the brown trout were almost exclusively found in the littoral zone. In both lakes the parasite fauna reflected the niche segregation between trout and charr. Surface insects were most common in the diet of trout, but transmit few parasites, and accordingly the brown trout had a relatively low diversity and abundance of parasites. Parasites transmitted by benthic prey such as Gammarus and insect larva, were common in both salmonid host species. Copepod transmitted parasites were much more common in Arctic charr, as brown trout did not include zooplankton in their diets. Parasite species that may use small fish as transport hosts, were far more abundant in piscivorous fish, especially brown trout. The seasonal dynamics in parasite infection were also consistent with the developments in the diet throughout the year. The study demonstrates that the structure of parasite communities of charr and the trout is highly dependent on shifts in habitat and diet of their hosts both on an annual base and through the ontogeny, in addition to the observed niche segregation between the two salmonid species.  相似文献   

10.
Lake Pisses and Lake Labarre are two oligotrophic high altitude alpine lakes that have sympatric populations of Arctic charr and brown trout. These two lakes have similar morphometric, physical and chemical characteristics. The zooplanktonic and benthic fauna show little diversity. But the density of benthos (Chironomidae) and zooplankton is higher in Lake Pisses. The fish fauna of Lake Pisses is slightly more abundant than that of Lake Labarre, althought in both lakes fish density is low. A study of the diet of the two species revealed differences. In Lake Pisses, where the food supply is better, Arctic charr takes exclusively pelagic and benthic prey, whereas in Lake Labarre it also takes exogenous prey and thus comes into competition with trout. Length and body weight growth rates for Arctic charr are higher in Lake Pisses than in Lake Labarre. For trout, maximum length recorded was in Lake Pisses. The results show that the abundance of Chironomidae favours coexistence of the two species in Lake Pisses and confirm that, in the face of shortage of food, Arctic charr is better adapted than trout. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We studied habitat choice, diet, food consumption and somatic growth of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) during the ice-covered winter period of a subarctic lake in northern Norway. Both Arctic charr and brown trout predominantly used the littoral zone during winter time. Despite very cold winter conditions (water temperature <1°C) and poor light conditions, both fish species fed continuously during the ice-covered period, although at a much lower rate than during the summer season. No somatic growth could be detected during the ice-covered winter period and the condition factor of both species significantly declined, suggesting that the winter feeding rates were similar to or below the maintenance requirements. Also, the species richness and diversity of ingested prey largely decreased from summer to winter for both fish species. The winter diet of Arctic charr <20 cm was dominated by benthic insect larvae, chironomids in particular, and Gammarus lacustris, but zooplankton was also important in December. G. lacustris was the dominant prey of charr >20 cm. The winter diet of brown trout <20 cm was dominated by insect larvae, whereas large-sized trout mainly was piscivorous, feeding on juvenile Arctic charr. Piscivorous feeding behaviour of trout was in contrast rarely seen during the summer months when their encounter with potential fish prey was rare as the small-sized charr mainly inhabited the profundal. The study demonstrated large differences in the ecology and interactions of Arctic charr and brown trout between the winter and summer seasons.  相似文献   

12.
Arctic charr and European whitefish are common species in northern Europe, but have a parapatric distribution pattern and rarely coexist in substantial densities within the same lake. Whitefish is considered to be the strongest competitor, usually causing competitive relegation or exclusion of co-occurring charr. Some exceptions do however occur, and the present study addresses niche utilization and resource partitioning of an Arctic charr population coexisting with whitefish and grayling in a subarctic lake. There was a distinct resource partitioning with respect to habitat and diet utilization of the three species. Grayling were exclusively caught in shallow near-shore areas, feeding chiefly on surface insects and Trichoptera larvae. Whitefish dominated in all lake habitats, feeding predominantly on small-sized planktonic and benthic crustaceans. Arctic charr were mainly found along the benthic profile, feeding predominantly on insects and snails and showing a low dietary overlap with whitefish which appeared to have monopolised the zooplankton resources. The highly restricted trophic niche of Arctic charr suggests a severe competitive impact due to the presence of whitefish, but the coexistence of the two species may be facilitated by the presence of grayling.  相似文献   

13.
Patterns of diel food selection in pelagic Arctic charr, Salvelinus alpinus (L.) and brown trout, Salmo trutta L. were investigated in Lake Atnsjo, SE Norway, by gillnet sampling during July-September 1985. Arctic charr feed almost exclusively on zooplankton both day and night, while brown trout had a diurnal shift in diet. For this species zooplankton made up a considerable part of the diet in the daytime, while at night the diet consisted mainly of surface insect and chironomid pupae. Both species had a selective feeding mode on zooplankton during the day and night. Arctic charr had a higher gill raker number and a denser gill raker spacing compared with brown trout. Still, the differences in prey size between the two species were small. We argue that the observed differences in food selection between Arctic charr and brown trout can be explained by differing abilities to detect food items under low light conditions.  相似文献   

14.
 The diet and foraging microhabitat of white-spotted charr, Salvelinus leucomaenis, were compared between mountain stream reaches where it occurs with (sympatric) and without (allopatric) masu salmon, Oncorhynchus masou masou, a potential competitor, to examine the evidence for interspecific competition between these fish, which commonly co-occur in Japanese mountain streams. In three streams examined, the similarity between the diets of allopatric charr and salmon was much greater than that between the diets of sympatric charr and salmon. Both allopatric charr and sympatric salmon intensively utilized terrestrial invertebrates among stream drifts (52%–65% of the diet), whereas this prey category made up only an intermediate portion of sympatric charr diets (11%–29%). Examination of available prey composition in stream drifts showed that the consumption of terrestrial invertebrates by allopatric charr and sympatric salmon was approximately twice as much as that by sympatric charr. The presence of salmon, a potential competitor, may alter the diet of charr in the sympatric reaches. Charr holding focal points closer to the streambed were considered less efficient than sympatric salmon in their utilization of terrestrial invertebrates drifting primarily on the stream surface, although the foraging microhabitat of the charr was not influenced by the salmon. The mechanisms responsible for the dietary divergence between sympatric charr and salmon are probably the consequence of scramble competition over terrestrial invertebrates drifting on the stream surface. Received: January 21, 2002 / Accepted: November 19, 2002 Acknowledgments We thank Y. Tokuda, T. Takasu, Y. Kaneda, H. Jyoya, and H. Aoe for their assistance. This work was partly supported by funding through the Takara Harmonist Fund by the Takara Syuzo Co. Ltd. and the Japan Ministry of Education, Science, Sport and Culture (grants 09NP1501 and 11440224). Correspondence to:H. Miyasaka  相似文献   

15.
1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations was strongly dependent on duration of the ice-covered period. Our study shows that changes in ice phenology may alter species interactions in Northern aquatic systems. Increased knowledge of how adaptations to winter conditions differ among coexisting species is therefore vital for our understanding of ecological impacts of climate change.  相似文献   

16.
Habitat shifts in rainbow trout: competitive influences of brown trout   总被引:2,自引:0,他引:2  
Summary We compared habitat use by rainbow trout sympatric (three streams) and allopatric (two streams) with brown trout to determine whether competition occurred between these two species in the southern Appalachian Mountains. We measured water depth, water velocity, substrate, distance to overhead vegetation, sunlight, and surface turbulence both where we collected trout and for the streams in general. This enabled us to separate the effects of habitat availability from possible competitive effects. The results provided strong evidence for asymmetrical interspecific competition. Habitat use varied significantly between allopatric and sympatric rainbow trout in 68% of the comparisons made. Portions of some differences refelected differences in habitats available in the several streams. However, for all habitat variables measured except sunlight, rainbow trout used their preferred habitats less in sympatry with brown trout than in allopatry if brown trout also preferred the same habitats. Multivariate analysis indicated that water velocity and its correlates (substrate particle size and surface turbulence) were the most critical habitat variables in the interaction between the species, cover in the form of shade and close overhead vegetation was second most important, and water depth was least important.  相似文献   

17.
Changes in abiotic and biotic factors between seasons in subarctic lake systems are often profound, potentially affecting the community structure and population dynamics of parasites over the annual cycle. However, few winter studies exist and interactions between fish hosts and their parasites are typically confined to snapshot studies restricted to the summer season whereas host‐parasite dynamics during the ice‐covered period rarely have been explored. The present study addresses seasonal patterns in the infections of intestinal parasites and their association with the diet of sympatric living Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in Lake Takvatn, a subarctic lake in northern Norway. In total, 354 Arctic charr and 203 brown trout were sampled from the littoral habitat between June 2017 and May 2018. Six trophically transmitted intestinal parasite taxa were identified and quantified, and their seasonal variations were contrasted with dietary information from both stomachs and intestines of the fish. The winter period proved to be an important transmission window for parasites, with increased prevalence and intensity of amphipod‐transmitted parasites in Arctic charr and parasites transmitted through fish prey in brown trout. In Arctic charr, seasonal patterns in parasite infections resulted mainly from temporal changes in diet toward amphipods, whereas host body size and the utilization of fish prey were the main drivers in brown trout. The overall dynamics in the community structure of parasites chiefly mirrored the seasonal dietary shifts of their fish hosts.  相似文献   

18.
Density and composition of benthic invertebrates and the diet of brown trout Salmo trutta and Alpine bullhead Cottus poecilopus were studied at two sites in one Norwegian stream. The sites were separated by an impassable waterfall, and brown trout density was five to 10 times higher at the upper, allopatric site than downstream where it lived in sympatry with the Alpine bullhead. Benthic invertebrate communities did not differ between sites; however, the size distribution of chironomids and trichopterans were skewed towards lighter individuals at the sympatric site. Diet composition suggested that sympatric brown trout foraged more on invertebrate drift and from the surface than allopatric brown trout. Alpine bullhead diet did not differ significantly from brown trout diet, except that the Alpine bullhead fed on heavier individual prey within a few taxa and did not consume chironomid pupae or surface insects. The collected data support the hypothesis that brown trout living in sympatry with Alpine bullhead feed at locations with higher predation risk, which is a probable explanation for their lower population density.  相似文献   

19.
SUMMARY. 1. Habitat utilization, as well as inter- and intraspecific relations of different size groups of arctic charr (Salvelinus alpinus (L.)) and brown trout (Salmo trutta L.) in Lake Atnsjø, south-east Norway, were investigated by analysing food and spatial niches from monthly benthic and pelagic gillnet catches during June-October 1985.
2. Small individuals (150–230 mm) of both arctic charr and brown trout occurred in shallow benthic habitats. However, they were spatially segregated as arctic charr dominated at depths of 5–15 m and brown trout at depths of 0–5 m.
3. Larger (>230 mm) arctic charr and brown trout coexisted in the pelagic zone. Both species occurred mainly in the uppermost 2-3 m of the pelagic, except in August, when arctic charr occurred at high densities throughout the 0–12 m depth interval. On this occasion, arctic charr were segregated in depth according to size, with significantly larger fish in the top 6 m. This was probably due to increased intraspecific competition for food.
4. The two species differed in food choice in both habitats, Arctic charr fed almost exclusively on zooplankton, whereas brown trout had a more variable diet, consisting of surface insects, zooplankton. aquatic insects and fish.
5. The data suggest that the uppermost pelagic was the more favourable habitat for both species. Large individuals having high social position occupied this habitat, whereas small individuals lived in benthic habitat where they were less vulnerable to agonistic behaviour from larger individuals and less exposed to predators. The more aggressive and dominant brown trout occupied the more rewarding part of the benthic habitat.  相似文献   

20.
1.  Inter-individual differences in trophic behaviour are considered important in the disruptive selection process for resource specialization and may represent an early phase in the evolution of polymorphism and adaptive radiation. Here, we provide evidence of high stability of individual trophic niches of a fish predator from a 15-year study.
2.  Individual resource specialization was investigated by combining data from analyses of stomach contents (recent trophic niche), trophically transmitted parasites (long-term niche) and trophic morphology (niche adaptations) from single specimens of a postglacial fish (Arctic charr) population sampled from contrasting pelagic and littoral habitats.
3.  Based on the relationships between morphology, parasites and diet, high inter-individual temporal consistency of narrow niches (zooplanktivorous vs . benthivorous) was evident through the ontogeny of the charr, indicating low degree of switching both in habitat utilization and feeding strategy of individual fish. Co-occurrence of differently specialized behavioural phenotypes was sustained over multiple generations.
4.  The stable long-term habitat and feeding specializations may represent an important initial step in an adaptive radiation process, and our findings suggest a case of sympatric speciation into two incipient forms diverging along the littoral–pelagic resource axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号