首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the distal parts of the urinary tract, nerves containing nitric oxide (NO) are either postganglionic parasympathetic nerves, with cell bodies in the major pelvic ganglia, or sensory nerves with cell bodies in the lumbosacral dorsal root ganglia. We have used indirect immunohistochemical techniques to examine the distribution and regional variation of nerves immunoreactive for neuronal nitric oxide synthase (NOS) in the urinary bladder, distal ureter and in neurons in lumbosacral dorsal root ganglia (L1-L2 & L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were made of NOS fibres innervating the dome, body and base of the urinary bladder and distal ureter. Quantitative studies were also used to examine the effects of age on the percentage of dorsal root ganglion neurons immunoreactive for NOS. The dome and the body regions, in both age groups, contained no NOS-immunoreactive axons. The bladder base and distal ureter in young adults showed sparse to moderate numbers of fibres immunoreactive to NOS within the urothelium and in the subepithelium and muscle coat. In the aged rat there were slight reductions in the densities of NOS-immunoreactive nerves in all three regions. In the lumbosacral dorsal root ganglia, the percentage of NOS-immunoreactive neuronal profiles showed a significant reduction from 4.6 +/- 0.2% in young adult to 2.7 +/- 0.2% (means +/- S.E.M) in aged rats. These findings suggest that the effects of NO on the bladder and distal ureteric musculature and also its expression in dorsal root ganglion neurons are affected in aged rats and that the micturition reflex may be perturbed as a result.  相似文献   

2.
Protein Synthesis and Axonal Transport During Nerve Regeneration   总被引:11,自引:10,他引:1  
Abstract— Protein synthesis and axonal transport have been studied in regenerating peripheral nerves. Sciatic nerves of bullfrogs were unilaterally crushed or cut. The animals were killed 1, 2, or 4 weeks later, and 8th and 9th dorsal root ganglia removed together with sciatic nerves and dorsal roots. The ganglia were selectively labeled in vitro with [35S]-methionine. Labeled proteins, in dorsal root ganglia and rapidly transported to ligatures placed on the sciatic nerves and dorsal roots, were analyzed by two-dimensional polyacryl-amide gel electrophoresis. Qualitative analysis of protein patterns revealed no totally new proteins synthesized or rapidly transported in regenerating nerves. However, quantitative comparison of regenerating and contralateral control nerves revealed significant differences in abundance for some of the proteins synthesized in dorsal root ganglia, and for a few of the rapidly transported proteins. Quantitative analysis of rapidly transported proteins in both the peripheral processes (spinal nerves) and central processes (dorsal roots) revealed similar changes despite the fact that the roots were undamaged. The overall lack of drastic changes seen in protein synthesis and transport suggests that the neuron in its program of normal maintenance synthesizes and supplies most of the materials required for axon regrowth.  相似文献   

3.
AimsAfter peripheral nerve injury, p75NTR was upregulated in Schwann cells of the Wallerian degenerative nerves and in motor neurons but down-regulated in the injured sensory neurons. As p75NTR in neurons mediates signals of both neurotrophins and inhibitory factors, it is regarded as a therapeutic target for the treatment of neurodegeneration. However, its physiological function in the nerve regeneration is not fully understood. In the present study, we aimed to examine the role of p75NTR in the regeneration of peripheral nerves.Main methodsIn p75NTR knockout mice (exon III deletion), the sciatic nerves and facial nerves on one side were crushed and regenerating neurons in the facial nuclei and in the dorsal root ganglia were labelled by Fast Blue. The regenerating fibres in the sciatic nerve were also labelled by an anterograde tracer and by immunohistochemistry.Key findingsThe results showed that the axonal growth of injured axons in the sciatic nerve of p75NTR mutant mice was significantly retarded. The number of regenerated neurons in the dorsal root ganglia and in the facial nuclei in p75NTR mutant mice was significantly reduced. Immunohistochemical staining of regenerating axons also showed the reduction in nerve regeneration in p75NTR mutant mice.SignificanceOur data suggest that p75NTR plays an important role in the regeneration of injured peripheral nerves.  相似文献   

4.
The distribution of VIP-immunoreactivity was studied in the spinal cord and dorsal root ganglia of 6 mammalian species. Immunoreactive fibres and cell bodies were most apparent in the dorsal horn, dorsolateral funiculus, intermediolateral cell columns and the area around the central canal. The distribution of VIP immunoreactivity was similar in all species studied, mouse, rat, guinea pig, cat, horse and the marmoset monkey. There were fewer VIP fibres in the dorsal horn of cervical and thoracic segments than in lumbosacral segments. Using radioimmunoassay this gradient increase was quantitatively most marked in the sacral spinal cord of the cat. In dorsal root ganglia few nerve cell bodies but numerous fibres were present. A dual origin for VIP in the spinal cord is suggested: (A) Extrinsic, from dorsal root afferent fibres since immunoreactivity was decreased in dorsally rhizotomized animals (cats and rats) and in capsaicin pretreated rats (microinjection of dorsal root ganglia). (B) From local cell bodies intrinsic to the spinal cord which became visible after colchicine pretreatment of rats.  相似文献   

5.
The phrenic nerve of albino rats was studied for age changes in number of fibres, myelin sheath thickness and axon calibre. There is no significant morphological differences between nerves from young and aged rats and no difference with age was found in the number of fibres, myelin sheath thickness and axon calibre.  相似文献   

6.
Proteins labeled with [35S]methionine or [3H]leucine were generated in vitro in bullfrog dorsal root ganglia and their fast axonal transport in the spinal nerves was followed during a subsequent incubation period. Incubation of the ganglia in a medium where sucrose, choline chloride, or sodium isethionate replaced NaCl caused respectively an 88, a 37, or a 76% reduction in the quantity of proteins carried by the fast axonal transport system; no decrease in synthesis of labeled proteins was observed and protein transport followed the usual time course. Incubation of desheathed spinal nerves in a medium where sucrose replaced NaCl reduced by 67% the quantity of labeled proteins which were transported past the desheathed region. Although both the axons and the dorsal root ganglia exhibit the requirement for monovalent ions to maintain fast axonal transport, the possibility that the ionic requirements of the ganglia pertain to the somal portion of the nerve cell is discussed.  相似文献   

7.
A comparison was made using our work and that reported in the literature of the losses of myelinated and unmyelinated fibres in a variety of nerves and also of losses of nerve cells in dorsal root ganglia, after treatment of neonatal rats with capsaicin. In L3 and L4 dorsal roots 85-93% of unmyelinated fibres and 9-33% of myelinated fibres were lost after 50-100 mg/kg capsaicin neonatally. In rats treated with 85 mg/kg capsaicin, percentage losses of unmyelinated (89%) and myelinated (36%) fibres of L4 dorsal roots were remarkably similar to the calculated losses of small dark (92%) and large light (34%) neurones respectively in these ganglia. Studies with monoclonal antibody RT97 which labels the large light neurones only, confirmed that some RT97 negative cells (i.e. small dark neurones) remain after capsaicin treatment. At present no evidence exists to suggest that the cell death of small dark neurones or C fibres after neonatal capsaicin treatment is completely selective for subgroups of these neurones, either in relation to sensory modality, or in relation to immunocytochemical cell markers and peptide content. However much more data is required to establish whether this cell death is really nonselective as regards immunocytochemical markers.  相似文献   

8.
Degeneration of afferent nerve fibres was induced in rats in order to observe its effects on the properties of the extra-junctional membrane of soleus muscle fibres. In one approach, removal of dorsal root ganglia L4 and L5 was accomplished in preparations with intact or impulse-blocked (with tetrodotoxin containing cuffs around the sciatic nerve) efferent innervation. Spike resistance to tetrodotoxin developed in the inactive deafferented preparations earlier and to a greater extent than in control, that is only impulse-blocked, preparations. In another series of experiments, efferent denervation alone proved to be less effective than the association of efferent and afferent denervation. On the other hand, section of the afferent fibres central to the dorsal root ganglia was without effect. These results are consistent with the interpretation that products of nerve degeneration contribute together with inactivity to the development of the extrajunctional membrane changes observed in skeletal muscle after denervation.  相似文献   

9.
Damage to the sciatic nerve produces significant changes in the relative synthesis rates of some proteins in dorsal root ganglia and in the amounts of some fast axonally transported proteins in both the sciatic nerve and dorsal roots. We have now analyzed protein synthesis and axonal transport after cutting the other branch of dorsal root ganglia neurons, the dorsal roots. Two to three weeks after cutting the dorsal roots, [35S]methionine was used to label proteins in the dorsal root ganglia in vitro. Proteins synthesized in the dorsal root ganglia and transported along the sciatic nerve were analyzed on two-dimensional gels. All of the proteins previously observed to change after sciatic nerve damage were included in this study. No significant changes in proteins synthesized in dorsal root ganglia or rapidly transported along the sciatic nerve were detected. Axon regrowth from cut dorsal roots was observed by light and electron microscopy. Either the response to dorsal root damage is too small to be detected by our methods or changes in protein synthesis and fast axonal transport are not necessary for axon regrowth. When such changes do occur they may still aid in regrowth or be necessary for later stages in regeneration.  相似文献   

10.
Rat sciatic nerve, spinal root, and cranial nerve were immunostained with an antibody against rat brain carbonic anhydrase II (ca), to determine the localization of ca in the rat peripheral nervous system (PNS). Similar methods were applied to mouse nerves to see if that antigen could be detected in the PNS of this species. In rat nerves, intense immunostaining was observed in the axoplasm of many of the myelinated fibers, whereas others were stained less intensely or were negative. A heterogeneous pattern of immunostaining was also found in neuronal perikarya within the ganglia, and in some regions of the ganglia ca immunostaining was found in putative satellite cells and their processes. Ca in rat PNS therefore appears to occur at both neuronal and glial sites, whereas it is exclusively glial in the CNS. In longitudinal sections of some fibers within rat nerves, ca immunostaining could be detected at the inner boundaries of the myelin sheaths. In mouse nerves, axoplasmic staining was observed but it was fainter than in rat nerves. Interspecies differences were most obvious in the dorsal columns of the spinal cord. In rat, intensely stained axons proceeded through the roots into the gracilis or cuneate and often into the gray matter. In mouse, there was much less immunostaining of axons but more intense ca immunostaining in CNS myelin than in the CNS myelin in the rat cord. The implications concerning putative functions of ca in the rodent nervous system are discussed.  相似文献   

11.
The distribution and origin of substance P immunoreactive nerve elements have been studied in the guinea-pig prevertebral ganglia by the indirect immunohistochemical technique, using a monoclonal antibody to substance P. Non-varicose substance P immunoreactive nerve fibres enter or leave the ganglia in all nerves associated with them, traversing the ganglia in larger or smaller bundles. Networks, mainly single-stranded, of varicose substance P immunoreactive nerve fibres also permeate the ganglia, forming a loose meshwork among the neurons. Similar networks are present in the lumbar paravertebral ganglia. In all these ganglia, neuronal somata do not in general show substance P immunoreactivity. The various nerves connected with the inferior mesenteric ganglion have been cut, in single categories and in various combinations, and the ganglion examined, after intervals of up to six days. Cutting the colonic or hypogastric nerves, which connect the ganglion with the hindgut and pelvic organs, leads to accumulation of substance P immunoreactive material in their ganglionic stumps, extending retrogradely to intraganglionic non-varicose fibres traceable through into the intermesenteric and lumbar splanchnic nerves. There is some local depletion of intraganglionic varicose networks. Cutting the intermesenteric nerve, which connects the coeliac-superior mesenteric ganglion complex with the ganglion, leads to accumulation of substance P immunoreactive material in its cranial stump and depletion of its distal stump; a minimal depletion is detectable in the inferior mesenteric ganglion itself. Cutting the lumbar splanchnic nerves, which connect the ganglion with the upper lumbar spinal cord and dorsal root ganglia, leads to accumulation of substance P immunoreactive material in their proximal stumps and total depletion of their distal, ganglionic stumps; in the ganglion there is subtotal loss of non-varicose substance P immunoreactive fibres and of varicose nerve networks, and the few surviving non-varicose fibres are traceable across the ganglion from the intermesenteric nerve to the colonic and hypogastric nerves. Cutting the intermesenteric and lumbar splanchnic nerves virtually abolishes substance P immunoreactive elements from the ganglion within three days postoperatively. It is concluded that these arise centrally to the ganglion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Summary The presence and distribution of galanin-immunoreactivity was examined in the uterine cervix and paracervical autonomic ganglia of the female rat. Some animals were treated with capsaicin to determine if galanin-immunoreactivity was present in small-diameter primary afferent nerves. Other animals were treated with the noradrenergic neurotoxin 6-hydroxydopamine to ascertain if galanin-immunoreactivity was present in sympathetic noradrenergic nerves. Galanin-immunoreactive nerve fibers were sparse in the cervical myometrium and vasculature, but numerous in the paracervical ganglion where they appeared to innervate principal neurons. Immunoreactivity was also present in dorsal root ganglia, dorsal horn of spinal cord, and inferior mesenteric ganglia. Capsaicin treatment resulted in a marked reduction of galanin-immunoreactivity in the spinal cord dorsal horn, but not in the dorsal root ganglia, paracervical ganglia, or cervix (although there was a substantial reduction of substance P-, neurokinin A-, and calcitonin gene-related peptide-immunoreactivity in the dorsal horn, dorsal root ganglia, and uterine cervix). 6-Hydroxydopamine treatment did not cause any appreciable change in the galanin-immunoreactivity in any tissues. We conclude that galanin-like immunoreactivity is expressed in nerve fibers innervating the paracervical ganglia and uterine cervix of the female rat. This immunoreactivity is probably present in afferent nerves and could play a role in neuroendocrine reflexes and in reproductive function.  相似文献   

13.
A functionally coupled organotypic complex of cultured dorsal root ganglia, spinal cord peripheral nerve, and muscle has been employed in an experimental approach to the investigation of the neurotoxic effects of thallium. Selected cultures, grown for up to 12 wk in vitro, were exposed to thallous salts for periods ranging up to 4 days. Cytopathic effects were first detected after 2 h of exposure with the appearance of considerably enlarged mitochondria in axons of peripheral nerve fibers. With time, the matrix space of these mitochondria became progressively swollen, transforming the organelle into an axonal vacuole bounded by the original outer mitochondrial membrane. Coalescence of adjacent axonal vacuoles produced massive internal axon compartments, the membranes of which were shown by electron microprobe mass spectrometry to have an affinity for thallium. Other axoplasmic components were displaced within a distended but intact axolemma. The resultant fiber swelling caused myelin retraction from nodes of Ranvier but no degeneration. Impulses could still propagate along the nerve fibers throughout the time course of the experiment. Comparable, but less severe changes were seen in dorsal root ganglion neurons and in central nerve fibers. Other cell types showed no mitochondrial change. It is uncertain how these findings relate to the neurotoxic effects of thallium in vivo, but a sensitivity of the nerve cell and especially its axon to thallous salts is indicated.  相似文献   

14.
In the distal parts of the urinary tract, nerves containing calcitonin gene-related peptide (CGRP) or substance P (SP) are sensory with their cell bodies located in lumbosacral dorsal root ganglia. These two neuropeptides are recognised as being present in pelvic sensory nerves, and may be involved in the mediation of pain, stretch and/or vasodilatation. We have used indirect immunohistochemical techniques to examine the distribution and regional variation of nerves immunoreactive (-ir) for CGRP and SP in the urinary bladder and in neurons in lumbosacral dorsal root ganglia (L1-L2 & L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were made for CGRP-ir and SP-ir fibres innervating the dome, body and base of the urinary bladder. Quantitative studies were also used to examine the effects of age on the percentage of dorsal root ganglion neurons immunoreactive for CGRP and SP. There were very few immunoreactive axons in the dome and the overall density of innervation increased progressively towards the base of the bladder. The density of innervation in the aged rats revealed a slight reduction in CGRP and SP innervation of the detrusor muscle but was otherwise comparable to the young group. However, immunostaining of the lumbosacral dorsal root ganglia revealed that the percentage of CGRP- and SP-ir neuronal profiles showed a significant (P < 0.05) reduction from (mean +/- S.D) 44.5 +/- 2; 23.3 +/- 2 in young adult to 25.0 +/- 2.9; 14.8 +/- 1.6 in aged rats, respectively. These findings suggest that the involvement of CGRP and SP in urinary bladder innervation is relatively unchanged in old age, but their expression in dorsal root ganglion neurons is affected by age. The afferent micturition pathway from the pelvic region via these lumbosacral ganglia may be perturbed as a result.  相似文献   

15.
Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection, retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precursor into the cell body regions (L4 and L5 dorsal root ganglia) of the sciatic nerve. We now report the retrograde axonal transport of inositol phospholipids synthesized locally in the axons. Following microinjection of myo-[3H]inositol into the rat sciatic nerve (50-55 mm distal to L4 and L5 dorsal root ganglia), a time-dependent accumulation of 3H label occurred in the dorsal root ganglia ipsilateral to the injection site. The ratio of dpm present in the ipsilateral dorsal root ganglia to that in the contralateral dorsal root ganglia was not significantly different from unity between 2 and 8 h following isotope injection but increased to 10-12-fold between 24 and 72 h following precursor injection. By 24 h following precursor injection, the ipsilateral/contralateral ratio of the water-soluble label in the dorsal root ganglia still remained approximately 1.0, whereas the corresponding ratio in the chloroform/methanol-soluble fraction was approximately 20. The time course of appearance of labeled lipids in the ipsilateral dorsal root ganglia after injection of precursor into the nerve at various distances from the dorsal root ganglia indicated a transport rate of at least 5 mm/h. Accumulation of label in the dorsal root ganglia could be prevented by intraneural injection of colchicine or ligation of the sciatic nerve between the dorsal root ganglia and the isotope injection site. These results demonstrate that inositol phospholipids synthesized locally in the sciatic nerve are retrogradely transported back to the nerve cell bodies located in the dorsal root ganglia.  相似文献   

16.
Of the free amino acids found in extracts of cat spinal roots, dorsal root ganglia and peripheral nerves, only glutamate was present in disproportionately high concentrations in those parts of the dorsal roots between ganglia and spinal cord. This distribution suggests that the high dorsal root levels of glutamate may result from synthesis in dorsal root ganglia and subsequent transport towards the spinal cord. Four excitant amino acids were detected in the extracts: aspartate, cysteate, cysteine sulphinate and glutamate. The unique regional distribution of glutamate is consistent with the proposed role of this amino acid as an excitatory transmitter at the terminals of primary afferent fibres.  相似文献   

17.
This study evaluated the role of poly(ADP-ribose) polymerase (PARP) in systemic oxidative stress and 4-hydoxynonenal adduct accumulation in diabetic peripheral neuropathy. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor, 1,5-isoquinolinediol, 3 mg kg(-1) day(-1), for 10 weeks after an initial 2 weeks. Treatment efficacy was evaluated by poly(ADP-ribosyl)ated protein content in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons and nonneuronal cells (fluorescence immunohistochemistry), as well as by indices of peripheral nerve function. Diabetic rats displayed increased urinary isoprostane and 8-hydroxy-2'-deoxyguanosine excretion (ELISA) and 4-hydroxynonenal adduct accumulation in endothelial and Schwann cells of the peripheral nerve, neurons, astrocytes, and oligodendrocytes of the spinal cord and neurons and glial cells of the dorsal root ganglia (double-label fluorescence immunohistochemistry), as well as motor and sensory nerve conduction velocity deficits, thermal hypoalgesia, and tactile allodynia. PARP inhibition counteracted diabetes-induced systemic oxidative stress and 4-hydroxynonenal adduct accumulation in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons (perikarya, fluorescence immunohistochemistry), which correlated with improvement of large and small nerve fiber function. The findings reveal the important role of PARP activation in systemic oxidative stress and 4-hydroxynonenal adduct accumulation in diabetic peripheral neuropathy.  相似文献   

18.
Synopsis Histochemical techniques were employed for the localization of choline acetyltransferase (ChAc; EC 2.3.1.6.), acetylcholinesterase (AChE; EC 3.1.1.7) and cholinesterase (ChE; EC 3.1.1.8) activities in dorsal and ventral roots and dorsal root ganglia of the bullfrog. AChE activity was present in most of the neuronal elements of dorsal root ganglia, in some nerve fibres in the dorsal roots, and in all nerve fibres in ventral roots. ChE activity in dorsal root ganglia and in the dorsal roots was confined to non-neuronal elements. No ChE activity was demonstrable in the ventral roots. ChAc activity was localized in many neurons of the dorsal root ganglia and in some nerve fibres of the dorsal roots; however, none of the ventral root fibres were visibly reactive. Some supportive cells of the dorsal roots and ganglia contained small amounts of ChAc activity. Except for the ventral roots, the histochemical distribution of AChE and ChAc activity was similar. The results of solubility studies indicated that under the histochemical conditions, approximately 50% of the ChAc remained bound to the dorsal roots and ganglia, whereas more than 90% of the ChAc in the ventral roots was soluble. This would account for the lack of reactivity in ventral root fibres. Differences in ChAc solubility are discussed in relation to the interpretation of histochemical data and in relation to the concept of multiple forms of ChAc. The results of this study indicate that at least one-third of the neurons of the dorsal root ganglia contain significant levels of the enzymes involved in both the synthesis and hydrolysis of acetylcholine.  相似文献   

19.
Transection of a peripheral nerve in neonatal rats induces death of the axotomized neurons which may be due to either necrosis or apoptosis. In the present investigation, neuronal cell death in L5 dorsal root ganglion was evaluated after unilateral sciatic nerve transection in rats at 1, 3, 5, 7 and 10 days age. After 5 days, right (experimental) and left (control) dorsal root ganglia in all groups were removed, fixed, processed and embedded for either light or electron microscopy. Normal nucleoli were counted in paraffin embedded serial sections, and correction factors for split and multiple nucleoli were applied as well as the physical disector. The number of neurons in the right dorsal root ganglia, as compared with the controls, was significantly lower in all groups, and the percentage of the reduction at 1, 3, 5, 7 and 10 days was 32.4, 27.2, 23.8, 22.8 and 21.8% respectively. On the other hand, the results of neuronal counts using the disector method showed 34.0, 25.7, 20.2, 20.0 and 14.2% reduction in the number of neurons at 1, 3, 5, 7 and 10 days, respectively. The microscopic and ultrastructural results indicated that there were typical morphological changes similar to those of apoptosis, including condensed basophilic nuclei, formation of nuclear caps, cell shrinkage and apoptotic body formation. We concluded that there is an increase in apoptosis in dorsal root ganglia following sciatic nerve axotomy with the greatest neuronal loss on postnatal day 1.  相似文献   

20.
The effect of nerve growth factor (NGF) on the synthesis of gangliosides   总被引:1,自引:1,他引:0  
—Dorsal root ganglia from 8-day- and 14-day-old chick embryos contained gangliosides with a pattern qualitatively similar to that of embryonic chick brain. The pattern of gangliosides from dorsal root ganglia changed with age, there being a decrease in polysialogangliosides with increasing age. When isolated, dorsal root ganglia were incubated in the presence of a concentration of nerve growth factor (NGF) sufficient to promote the outgrowth of nerve fibres, there was increased incorporation of d -[1-14C]glucosamine into gangliosides. There was, however, no difference in the pattern of incorporation into gangliosides by control ganglia and those exposed to NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号