首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unilateral injections of horseradish peroxidase into the cat spinal cord at different segmental levels revealed a laminar distribution of spinal interneurons that are sources of ipsilateral and contralateral propriospinal pathways of different lengths. The majority of the long pathways connecting cervical and lumbar segments are formed by neurons located in the central quadrants (laminae VII and VIII) bilaterally; a few such neurons also are present in the marginal layer and in lateral zones at the base of the dorsal horn (ipsilaterally). The zones containing numerous propriospinal neurons forming short (extending over a few segments) connections were more extensive. In the lumbar portion neurons which were sources of short uncrossed pathways tended to be concentrated in the lateral areas of the base of the dorsal horn, intermediate zone, and ventral horn, whereas sources of crossed pathways were concentrated in the ventromedial zones of gray matter. In the cervical portion "short" propriospinal neurons forming both ipsilateral and contralateral projections were concentrated in the lateral zones of gray matter. Neurons of the marginal layer and substantia gelatinosa and neurons of intermediolateral sympathetic nuclei also were sources of descending propriospinal pathways. Some propriospinal axons were intermediate in length. The distribution of neurons with axons of this kind largely coincided with the distribution of neurons that were sources of long propriospinal pathways. The connection between the spatial distribution of different groups of propriospinal neurons and the organization of the synaptic inputs into them, and also correlation between the morphological and functional characteristics of these neurons are discussed.  相似文献   

2.
The funicular distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting axons was examined in the white matter of the rabbit spinal cord by using horizontal, parasaggital, and transverse sections. Four morphologically distinct kinds of NADPHd-exhibiting axons (2.5–3.5 m in diameter) were identified in the sulcomarginal fasciculus as a part of the ventral column in the cervical and upper thoracic segments and in the long propriospinal bundle of the ventral column in Th3–L3 segments. Varicose NADPHd-exhibiting axons of the sympathetic preganglionic neurons, characterized by widely spaced varicosities, were found in the ventral column of Th2–L3 segments. A third kind of NADPHd-positive ultrafine axons, 0.3–0.5 m in diameter with numerous varicosities mostly spherical in shape, was identified in large number within Lissauer's tract. The last group of NADPHd-exhibiting axons (1.0–1.5 m in diameter) occurred in the Lissauer tract. Most of these axons were traceable for considerable distances and generated varicosities varying in shape from spherical to elliptical forms. The majority of NADPHd-exhibiting axons identified in the cuneate and gracile fascicles were concentrated in the deep portion of the dorsal column. An extremely reduced number of NADPHd-exhibiting axons, confirmed by a computer-assisted image-processing system, was found in the dorsal half of the gracile fascicle. Axonal NADPHd positivity could not be detected in a wide area of the lateral column consistent with the location of the dorsal spinocerebellar tract. Numerous, mostly thin NADPHd-positive axonal profiles were detected in the dorsolateral funiculus in all the segments studied and in a juxtagriseal portion of the lateral column as far as the cervical and lumbar enlargements. A massive occurrence of axonal NADPHd positivity was detected in the juxtagriseal layer of the ventral column all along the rostrocaudal axis of the spinal cord. The prominent NADPHd-exhibiting bundles containing thick, smooth, nonvaricose axons were identified in the mediobasal and central portion of the ventral column. First, the sulcomarginal fasciculus was found in the basal and medial portion of the ventral column in all cervical and upper thoracic segments. Second, more caudally, a long propriospinal bundle displaying prominent NADPHd positivity was localized in the central portion of the ventral column throughout the Th3–L3 segments.  相似文献   

3.
The primary divisions of the spinal nerve in the brown caiman characteristically show the following features: (1) the medial ramus was lies in the thoraco-lumbar and caudal regions, and (2) the first cervical and hypoglossal nerves form a single nerve complex from which the ventral and dorsal rami extend. Intramuscular injections of horseradish peroxidase (HRP) established the positions of motoneurons whose axons followed the primary rami. In the ventral horn of the thoracic and caudal spinal cord, the motoneurons of the medial ramus lie ventrally. These motoneurons lie between the epaxial and hypaxial motoneurons. At the spinomedullary junction, the pools of motoneurons innervating the infrahyoid, lingual, and dorsal muscles have a somatotopic organization similar to that observed in the thoraco-lumbar and caudal regions. Thus clear somatotopic organization of the motoneurons that innervate the axial musculature exists at all spinal levels. © 1994 Wiley-Liss, Inc.  相似文献   

4.
During myocardial ischemia, the cranial cervical spinal cord (C1-C2) modulates the central processing of the cardiac nociceptive signal. This study was done to determine 1) whether C2 SCS-induced release of an analgesic neuropeptide in the dorsal horn of the thoracic (T4) spinal cord; 2) if one of the sources of this analgesic peptide was cervical propriospinal neurons, and 3) if chemical inactivation of C2 neurons altered local T4 substance P (SP) release during concurrent C2 SCS and cardiac ischemia. Ischemia was induced by intermittent occlusion of the left anterior descending coronary artery (CoAO) in urethane-anesthetized Sprague-Dawley rats. Release of dynorphin A (1-13), (DYN) and SP was determined using antibody-coated microprobes inserted into T4. SCS alone induced DYN release from laminae I-V in T4, and this release was maintained during CoAO. C2 injection of the excitotoxin, ibotenic acid, prior to SCS, inhibited T4 DYN release during SCS and ischemia; it also reversed the inhibition of SP release from T4 dorsal laminae during C2 SCS and CoAO. Injection of the kappa-opioid antagonist, nor-binaltorphimine, into T4 also allowed an increased SP release during SCS and CoAO. CoAO increased the number of Fos-positive neurons in T4 dorsal horns but not in the intermediolateral columns (IML), while SCS (either alone or during CoAO) minimized this dorsal horn response to CoAO alone, while inducing T4 IML neuronal recruitment. These results suggest that activation of cervical propriospinal pathways induces DYN release in the thoracic spinal cord, thereby modulating nociceptive signals from the ischemic heart.  相似文献   

5.
Quantitative estimates of the density of distribution of interneurons forming descending intersegmental connections in the cat spinal cord were obtained. Neurons were labeled by retrograde axonal transport of horseradish peroxidase injected unilaterally at different segmental levels. The mean number of labeled units per section 50 µ thick, in a given zone, was used as the measure of density. The density of distribution of the propriospinal neurons forming the longest tracts between the cervical and lumbosacral regions of the cord was found to be about half the density of distribution of neurons with short (not more than two segments) axons, and to be several times less than the corresponding value for neurons with axons of intermediate length. No marked local peaks of density of distribution of long-axon neurons were found at the level of the brachial enlargement. The number of neurons with crossed axons in most segments was close to half of the total number of propriospinal units. Zones of transverse section of the spinal cord with maximal concentrations of neurons forming direct and crossed propriospinal tracts of different lengths were determined at different levels. Correlation between the quantitative composition of propriospinal neuron populations with characteristics of influences transmitted by these populations is examined.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 96–105, January–February, 1984.  相似文献   

6.
Anatomical studies indicate that a relatively large percentage of spinohypothalamic tract (SHT) neurons are located within thoracic spinal segments. The aim of this study was to characterize the responses of SHT neurons in these segments of rats to innocuous and noxious stimulation of the skin and of a visceral structure, the bile duct. In addition, we attempted to determine the trajectories of the axons of the examined neurons within the diencephalon and brainstem. Fifty-three SHT neurons were recorded within segments T8-T13 in urethane anesthetized rats. Each cell was antidromically activated using current pulses < or = 30 microA delivered from the tip of an electrode located within the contralateral hypothalamus. The recording points were located in the superficial dorsal horn (9) and deep dorsal horn (44). All examined SHT neurons had receptive fields on the posterior thorax and anterior and ventral abdomen of the ipsilateral side. Ninety percent of the 41 SHT neurons responded exclusively (13) or preferentially (24) to noxious cutaneous stimuli. Thirteen of 27 (48%) examined units were activated by forceful distention of the bile duct. Response thresholds ranged from 30 to 40 mmHg. Responses incremented as pressures were increased to 50-80 mmHg. The axons of 22 of 28 (79%) examined SHT neurons appeared to cross the midline within the hypothalamus and terminate in the ipsilateral hypothalamus, thalamus or midbrain. The results indicate that SHT neurons in thoracic spinal cord of rats are capable of conveying somatic and visceral nociceptive information from the bile duct directly to targets at various levels of the brain bilaterally.  相似文献   

7.
The origin of the axon was studied in Golgi-Kopsch impregnated specimens prepared from the spinal cord and brain of adult rats. Five types of neurons were sampled: large ventral horn neurons, neurons in the intermediate zone and ventral horn of the spinal cord, antenna-type neurons in the spinal dorsal horn, neurons in the thalamus, and neurons in the hypothalamus. The axon originated from the perikaryon in 76% of the large ventral horn neurons and in 64% of the neurons in the thalamus. In contrast, the axon emerged from one of the dendrites in 75% of the neurons in the intermediate zone and the ventral horn of the spinal cord and in 68% of the neurons in the hypothalamus. In the case of the antenna-type neurons in the spinal dorsal horn, the axon often originated from one of the dendrites, but never from a dorsally oriented dendrite. The mean distance of the axon hillock of dendritic origin was the longest in the neurons in the intermediate zone and the ventral horn of the spinal cord. The size of the axon hillock was proportional to the size of the perikaryon. The impregnated portion of the axon was longest in the large ventral horn neurons.  相似文献   

8.
The distribution of propriospinal fiber terminals of the lateral funiculus in the lumbar segments of the cat spinal cord was examined by light and electron microscopy. For the selective demonstration of these terminals, preliminary hemisectioning of the brain at the boundary of the thoracic and lumbar segment, eliminating all the long descending pathways, and subsequent hemisectioning or sectioning of the lateral funiculus at the level of the third lumbar segment was carried out. It was established by staining the degenerating endings (by the Fink—Heimer method) that the terminals of the descending and ascending propriospinal fibers, which form part of the lateral and ventral funiculi, are located mainly in the lateral and medial parts of lamina VII and the dorsal section of lamina VIII, according to Rexed, as well as in the regions adjacent to the dorsolateral and ventromedial motor nuclei. A large number of these terminals is found in the corresponding regions of the gray matter on the contralateral side of the brain. Since, in the case of selective injury of the lateral funiculus the number of degenerating terminals in lamina VIII is noticeably decreased, it can be assumed that the propriospinal neuron terminals of the ventral funiculus are concentrated mainly in lamina VIII. The axons of the propriospinal neurons extend over several segments both in the ascending and in the descending directions. It was shown in an electron microscopic study of the regions in which most of the propriospinal terminals are located that these terminals are of an axo-dendritic nature and terminate in the dendrites of both inter- and motor neurons. Their degeneration can be of the "light" or "dark" type.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 401–407, July–August, 1971.  相似文献   

9.
Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.  相似文献   

10.
《Journal of Physiology》1998,92(1):37-42
Electrophysiological investigations of neurons of the C6 segment of the spinal cord were made in α-chloralose anesthetized animals. It was established in the experiments that a part of long descending propriospinal neurons originating in the sixth cervical segment (C6) that projected to sacral segments (S1/S2) gave off collateral branches at the level of the fourth lumbar segment (L4). Several types of neurons were distinguished according to the ipsilateral, contralateral or bilateral course of axons at the thoracic level as well as their lumbar or sacral projections. The cell bodies of 58 identified neurons were distributed in Rexed's laminae VII and VIII of the gray matter. Axons descended in lateral funiculi and their conduction velocities varied from 50 to 85 m/s. The existence of collaterals to various segments of the lumbosacral enlargement indicates that the same information conveyed by long descending propriospinal neurons can reach separate motor centers controlling various muscles of the hindlimbs.  相似文献   

11.
Nitric oxide synthase (NOS) activity was studied in the gray and white matter regions of the spinal cord 2 and 5 days after multiple cauda equina constrictions of the central processes of L7-Co5 dorsal root ganglia neurons. The results show considerable differences in enzyme activity in the thoracic, upper lumbar, lower lumbar, and sacral segments. Increased NOS activity was observed at 2 days after multiple cauda equina constrictions in the dorsal, lateral, and ventral columns of the lower lumbar segments and in the ventral column of the upper lumbar segments. The values returned to control levels within 5 postconstriction days. In the lateral columns of thoracic segments taken 2 and 5 days after surgery, NOS activity was enhanced by 54% and 55% and in the upper lumbar segments by 130% and 163%, respectively. Multiple cauda equina constrictions performed surgically for 2 and 5 days caused a significant increase in NOS activity predominantly in the gray matter regions of thoracic segments. A quite different response was found 5 days postconstriction in the upper lumbar segments, where the enzyme activity was significantly decreased in the dorsal horn, intermediate zone, and ventral horn. No such extreme differences could be seen in the lower lumbar segments, where NOS activity was significantly enhanced only in the ventral horn. The data correspond with a higher number of NOS immunoreactive somata, quantitatively evaluated in the ventral horn of the lower lumbar segments at 5 days after multiple cauda equina constrictions. While the great region-dependent heterogeneity in NOS activity seen 2 and 5 days after multiple cauda equina constrictions is quite apparent and suggestive of an active role played by nitric oxide in neuroprotective or neurotoxic processes occurring in the gray and white matter of the spinal cord, the extent of damage or the degree of neuroprotection caused by nitric oxide in compartmentalized gray and white matter in this experimental paradigm would be possible only using longer postconstriction periods.  相似文献   

12.
Three isoforms of the alpha subunit of (Na,K)-ATPase have been identified in the rat central nervous system. Using a probe specific for the alpha 1 isoform, mRNA levels were measured from five sections of the rat spinal cord using slot blot techniques. Assigning a value of 1 to the slope obtained from the cervical section, the upper thoracic section was 2.6 times higher; the midthoracic section was 4.5 times higher; the lower thoracic section was 2.6 times higher; and the lumbar section was 1.7 times higher. The results suggest that alpha 1 isoform mRNA levels are not uniform throughout the spinal cord. In situ hybridization techniques showed that alpha 1 isoform mRNA was diffusely abundant in glial and central canal ependymal cells, while labeled neurons were localized exclusively in lateraily located anterior horn neurons in cervical, thoracic, and lumbar segments and in ventromedial neurons in mid-thoracic spinal cord. Also, dorsal root ganglia neurons were extensively labeled at all segments.Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

13.
The location of labeled neurons that are sources of ascending crossed and uncrossed supraspinal fiber systems was studied in the laminae of gray matter of the spinal cord in 18 cats by the retrograde axonal transport of horseradish peroxidase method. Neurons in the lateral zones of the dorsal horn were shown to make direct, and cells in neighboring regions indirect (through relay nuclei of the dorsal columns) connections with the contralateral thalamus. In the lower segments of the spinal cord sources of crossed spinoreticular and spinothalamic fiber systems are located in the medial regions of the ventral horn and lateral zones of the lateral basilar region. Some large neurons in the motor nuclei were shown to send their axons into the lateral reticular nucleus of the medulla. On the basis of the results a scheme of the laminar organization of sources of ascending fiber systems in the cat spinal cord is constructed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 451–459, September–October, 1979.  相似文献   

14.
Structural and ultrastructural changes in the medial part of the ventral horn were studied in segments of the cat spinal cord following destruction of the ventral column at the level C1–C2. Analysis of results obtained by the Fink — Heimer method showed that degenerating preterminals occur mainly in Rexed's lamina VIII and also in ventromedial zones of lamina VII. Preterminals of descending pathways of the ventral column are also found in the intermediate nucleus of Cajal (central part of lamina VI) and in the ventromedial motor nucleus. Fewer of these preterminals are present in the thoracic and, in particular, in the lumbar segments. Staining by the Holländer — Vaaland method revealed degenerating myelinated axons of small diameter (3–5 µ), evidently collaterals of descending fibers entering the gray matter, in lamina VIII. Degenerative changes in myelinated axons may be manifested either as marked condensation and shrinking or as the appearance of numerous neurofilaments, polymembraneous structures, and cytolysomes. Degeneration also affects axon terminals (axo-dendritic, axo-somatic, and axo-axonal) with spherical or flattened synaptic vesicles. Counting the relative numbers of intact terminals of the various types and their comparison with the corresponding figures for normal animals shows that most connections of descending fibers with spinal neurons are axo-dendritic in character. No degenerating terminals were found on the soma of the "dark" neurons or their processes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 579–586, November–December, 1972.  相似文献   

15.
Fictitious scratching, i.e., rhythmic activity of hind-limb motoneurons at the characteristic scratching frequency, was evoked by tactile stimulation of the ear in thalamic cats immobilized with flaxedil. Activity of propriospinal neurons in segments C1, C2, and T4–T7 was recorded extracellularly. The neurons were identified by their antidromic response to stimulation of their axons in segment L1. Most neurons did not respond to stimulation of the ear. Some neurons, however, were activated during fictitious scratching. Neurons of the cervical segments responded not only to stimulation of the ear, but also to tactile stimulation of the forelimbs and also to passive movements of those limbs. Neurons of the thoracic segments were activated only by stimulation of the ipsilateral ear; these neurons were inhibited by stimulation of the contralateral ear. The role of the propriospinal neurons in the activation of the spinal mechanisms of scratching is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 504–511, September–October, 1977.  相似文献   

16.
Different types of sensory neurons in the dorsal root ganglia project axons to the spinal cord to convey peripheral information to the central nervous system. Whereas most proprioceptive axons enter the spinal cord medially, cutaneous axons typically do so laterally. Because heavily myelinated proprioceptive axons project to the ventral spinal cord, proprioceptive axons and their associated oligodendrocytes avoid the superficial dorsal horn. However, it remains unclear whether their exclusion from the superficial dorsal horn is an important aspect of neural circuitry. Here we show that a mouse null mutation of Sema6d results in ectopic placement of the shafts of proprioceptive axons and their associated oligodendrocytes in the superficial dorsal horn, disrupting its synaptic organization. Anatomical and electrophysiological analyses show that proper axon positioning does not seem to be required for sensory afferent connectivity with motor neurons. Furthermore, ablation of oligodendrocytes from Sema6d mutants reveals that ectopic oligodendrocytes, but not proprioceptive axons, inhibit synapse formation in Sema6d mutants. Our findings provide new insights into the relationship between oligodendrocytes and synapse formation in vivo, which might be an important element in controlling the development of neural wiring in the central nervous system.  相似文献   

17.
The lateral vestibulospinal tract (LVST) is one of the major descending pathways controlling the extensor musculature of the body. To determine whether individual LVST neurons terminating in the lumbosacral spinal segments issue collaterals more rostrally to exert an influence of the cervical ventral horn intracellular recording and biocytin labeling techniques were used in the squirrel monkey. Only neurons monosynaptically related to the 8th nerve and antidromically identified to project below T12 were selected for study. The axon course through the brainstem and cervical spinal cord was examined in 37 LVST neurons. The average distance of recovered axon was 17.3 mm (4.5-31.7 mm). None could be antidromically activated from shocks applied to the rostral medial longitudinal fasciculus near the 3rd nuclei; and no collaterals were observed in the brainstem. Of the 37 neurons, only 1 axon issued a collateral to innervate the ventral horn, primarily in the region of the spinal accessory motoneurons; this single collateral provided a relatively minor input compared to that of LVST neurons terminating in the cervical cord. Thus, secondary, caudal-projecting LVST neurons represent a private, and mostly rapid, communication pathway between dorsal Deiters' nucleus and the motor circuits controlling the lower limbs and tail.  相似文献   

18.
Activity of propriospinal neurons in segments C3 and C4 was recorded in immobilized decerebrate cats, whose spinal cord was divided at the lower thoracic level, during locomotor activity of neuronal mechanisms controlling the forelimbs (fictitious locomotion of the forelimbs). Neurons were identified according to antidromic responses to stimulation of the lateral column of the spinal cord at level C6. Antidromic responses also appeared in 70% of these neurons to stimulation of the medullary lateral reticular nucleus. During fictitious locomotion, i.e., in the absence of afferent signals from the limb receptors, rhythmic modulation of the discharge of most neurons was observed, correlating with activity of motoneurons. If the rostral region of the cervical enlargement of the spinal cord was cooled, causing generation of the locomotor rhythm to cease, rhythmic activity of propriospinal neurons in segments C3 and C4 also ceased. The main source of modulation of activity of propriospinal neurons in segments C3 and C4 is thus the central spinal mechanisms controlling activity of the forelimbs.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow University. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 320–326, May–June, 1985.  相似文献   

19.
Serotonergic innervation of the spinal cord in mammals has multiple roles in the control of motor, sensory and visceral functions. In rats, functional consequences of spinal cord injury at thoracic level can be improved by a substitutive transplantation of serotonin (5-HT) neurons or regeneration under the trophic influence of grafted stem cells. Translation to either pharmacological and/or cellular therapies in humans requires the mapping of the spinal cord 5-HT innervation and its receptors to determine their involvement in specific functions. Here, we have performed a preliminary mapping of serotonergic processes and serotonin-lA (5-HT1A) receptors in thoracic and lumbar segments of the human spinal cord. As in rodents and non-human primates, 5-HT profiles in human spinal cord are present in the ventral horn, surrounding motoneurons, and also contact their presumptive dendrites at lumbar level. 5-HT1A receptors are present in the same area, but are more densely expressed at lumbar level. 5-HT profiles are also present in the intermediolateral region, where 5-HT1A receptors are absent. Finally, we observed numerous serotonergic profiles in the superficial part (equivalent of Rexed lamina II) of the dorsal horn, which also displayed high levels of 5-HT1A receptors. These findings pave the way for local specific therapies involving cellular and/or pharmacological tools targeting the serotonergic system.  相似文献   

20.
T Tashiro  M A Ruda 《Peptides》1988,9(2):383-391
Axons containing both serotonin-like (5-HT)-LI and substance P-like (SP)-LI immunoreactivity were identified in all laminae of the cat spinal cord at the level of the lumbar enlargement. Using an immunologically-specific, double immunofluorescence method, coexistent 5-HT-LI and SP-LI immunoreactivity could be visualized in the same tissue section with appropriate FITC and rhodamine fluorescent filter sets. The fewest number of coexistent axons were observed in the superficial laminae of the dorsal horn, while their number increased in the more ventral dorsal horn laminae. Numerous coexistent axons were observed in the area adjacent to the central canal. The greatest number of coexistent axons was found in the ventral horn, especially in the motoneuronal cell groups. This study demonstrates that axons containing coexistent 5-HT-LI and SP-LI immunoreactivity are found in all laminae of the cat lumbar spinal cord and are thus involved in both sensory and motor functions. Their more frequent occurrence in the ventral horn suggests a greater role for coexistent 5-HT and SP in motor function. Since axons containing coexistent 5-HT and SP, and those containing only 5-HT, likely originate from different populations of neurons, our observations provide evidence for a diverse origin of descending 5-HT afferents to the different spinal laminae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号