首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that regulates numerous key cardiovascular functions. High-density lipoproteins (HDLs) are the major plasma lipoprotein carriers of S1P. Fibrinolysis is a physiological process that allows fibrin clot dissolution, and decreased fibrinolytic capacity may result from increased circulating levels of plasminogen activator inhibitor-1 (PAI-1). We examined the effect of S1P associated with HDL subfractions on PAI-1 secretion from 3T3 adipocytes. S1P concentration in HDL3 averaged twice that in HDL2. Incubation of adipocytes with increasing concentrations of S1P in HDL3, but not HDL2, or with S1P complexed to albumin stimulated PAI-I secretion in a concentration-dependent manner. Quantitative RT-PCR revealed that S1P1–3 are expressed in 3T3 adipocytes, with S1P2 expressed in the greatest amount. Treatment of adipocytes with the S1P1 and S1P3 antagonist VPC23019 did not block PAI-1 secretion. Inhibiting S1P2 with JTE-013 or reducing the expression of the gene coding for S1P2 using silencing RNA (siRNA) technology blocked PAI-1 secretion, suggesting that the S1P2 receptor mediates PAI-1 secretion from adipocytes exposed to HDL3 or S1P. Treatment with the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor RO-318425, or the Rho-associated protein kinase (ROCK) inhibitor Y27632 all significantly inhibited HDL3- and S1P-mediated PAI-1 release, suggesting that HDL3- and/or S1P-stimulated PAI-1 secretion from 3T3 cells is mediated by activation of multiple, downstream signaling pathways of S1P2.  相似文献   

2.
The present report describes intracellular signaling events elicited by gibberellin (GA) in barley aleurone, where the phytohormone induces an increase on phosphoinositides turnover in a time-dependent manner. A biphasic behavior for PtdInsP was demonstrated by changes in [32P]PtdInsP levels, the earlier phase peaking at 5 min and the second phase at 25 min while PtdInsP 2 turnover was rapid but transient, peaking only at 5 min. In contrast, the structural phospholipid PtdCho turnover was only affected after 40 min. In addition, GA stimulated the synthesis of all phospholipids. Incorporation of [32P]Pi in unstimulated aleurone showed that both synthesis and degradation of polyphosphoinositides were relatively faster than those of structural phospholipids. We discuss the possible reasons why the changes in synthesis and turnover of phosphoinositide are required for GA signaling pathway and why it may be a critical event in the control of secretion in aleurone.  相似文献   

3.
Microsomes were prepared from cultured neonatal rat cardiomyocytes. Incubation of microsomes in buffer containing 5µM CaCl2, 5 mM cholate and 100 nM [3H-]Phosphatidylinosito14,5-bisphosphate (PtdIns(4,5) P2) resulted in the formation of [3H-]InsP 3. GTP-gamma-S (125 µM) stimulated the production of [3H-]InsP 3. Microsomes prepared from phorbol ester-treated (100 nM phorbol 12-myristate 13-acetate, PMA) cardiomyocytes showed decreased activities of basal as well as GTP-gamma-S-stimulated [3H-]Ptdlns(4,5)P 2 hydrolysis. In the microsomes a 15 kD protein was demonstrated to be the major substrate phosphorylated by intrinsic protein kinase C, which was activated by 0.5 mM Ca2+. Addition of phorbol ester (100 nM PMA) enhanced the 32P-incorporation into the 15 kD protein. Protein kinase C, purified from rat brain, in the presence of Ca2+, diglyceride, and phosphatidylserine did not change the phosphorylation pattern any further. In conclusion, it was shown that phorbol ester pretreatment of neonatal rat cardiomyocytes reduces microsomel GTP-gamma-S-stimulated Ptdlns(4,5)P 2-specific phospholipase C activity, as estimated with exogenous substrate, and that in cardiomyocyte microsomes phorbol ester activates protein kinase C-induced 15 kD protein phosphorylation. The results indicate that phorbol ester may down-regulate -adrenoceptor mediated Ptdlns(4,5)P 2 hydrolysis by activation of protein kinase C-induced 15 kD protein phosphorylation.List of abbreviations ATP Adenosine 5-Trphosphate - CSU Catalytic Subunit of cyclic AMP-dependent protein kinase - DG Diacylglycerol - DMSO Dimethylsulfoxide - DTT DL-dithiothreitol - EDTA Ethylenedinitrilotetraacetic Acid - EGTA Ethyleneglycol-0,0-bis(aminoethyl)-N,N,N,N,-tetraacetic acid - GTP-gamma-S Guanosine 5-O-(3-thiotriphosphate) - HPTLC High Performance Thin Layer Chromatography - InsP 3 Inositol monophosphate - InsP 2 Inositol bisphosphate - InsP 3 Inositol trisphosphate - MES 2-Morpholinoethanesulfonic acid - MOPS 3-[N-Morpholino]Propanesulfonic acid - PAGE Polyacrylamide-gel Electrophoresis - PKC Protein Kinase C - PLase C Phospholipase C - PMA Phorbol 12-Myristate 13-Acetate - PMSF Phenylmethylsulfonyl Fluoride - PtdSer Phosphatidylserine - PtdIns Phosphatidyl inositol - PT Pertussis Toxin - Ptdlns(4)P Phosphatidylinositol 4-monophosphate - Ptdlns (4,5)PZ-Phosphatidylinositol4,5-bisphosphate - SDS-Sodium Dodecyl Sulfate Tris-Tris(hydroxymethyl) aminomethane  相似文献   

4.
Slender barley: A constitutive gibberellin-response mutant   总被引:13,自引:0,他引:13  
In barley (Hordeum vulgare L. cv. Herta), slender (sln1) is a single-locus recessive mutation which causes a plant to appear as if it had been grown in sturating concentrations of gibberellin (GA). We have investigated two of the GA-mediated processes in slender barley, shoot elongation and the induction of hydrolytic enzymes in aleurone layers. Shoot elongation is severely retarded in normal (wild-type) barley if the biosynthesis of GA is blocked by an inhibitor, ancymidol (-cyclopropyl--(p-methoxyphenyl)-5-pyrimidinemethanol). However, the slender mutant continues to elongate in the presence of ancymidol. In isolated normal aleurone layers, the synthesis and secretion of -amylase (EC 3.2.1.1), protease (EC 3.4) and nuclease (EC 3.1.30.2) are induced by exogenously applied GA3. However, in the aleurone layers of the slender mutant these enzymes are produced even in the absence of GA but their synthesis is still susceptible to inhibition by abscisic acid. Bioassays of half-seeds of the slender mutant and their normal siblings show no detectable differences in endogenous levels of GA-like substances. We suggest that the slender mutation allows competent tissues to express fully, or over-express, appropriate GA-induced processes independent of GA. We also conclude that shoot elongation, and hydrolytic-enzyme secretion in aleurone layers, share a common regulatory element.Abbreviations ABA abscisic acid - GA gibberellin - GA3 gibberellic acid  相似文献   

5.
In rat cardiac sarcolemmal membranes a phosphoinositide-specific phospholipase C (PLC) was found to be present. The enzyme hydrolysed exogenous [3H-]phosphatidylinositol 4,5-biphosphate ([3H-]PtdIns(4,5)P 2) in an optimized assay mixture containing 15 leg SL protein, 100 mM NaCl, 1 mM free Ca2+,14 mM Na-cholate and 20 AM [3H-]PtdIns (4,5)P 2 (400–500 dpm/gm-l) in 30 mM HEPES-Tris buffer (pH 7.0). The average specific activity was 9.14±0.55 nmol-mg–1·2.5 min–1. The addition of Mg2+ to the assay mixture did not change PLC activity but increased the relative amounts of dephosphorylated inositol products. In the absence of Na+ and at a low Ca2+ concentration (0.3 M), Mg2+ also enhanced the intraSL levels of PtdIns4P and PtdIns, and, moreover, inhibited PLC activity (IC500.07 mM). PtdIns4P seemd to be a good substrate for the rat SL PLC (23.07 ± 1.57 nmol·mg–1·2.5 min–1) whereas PtdIns was hydrolysed at a very low rate (0.36 ± 0.08 nmol·mg–1·2.5 min–1). Unlike PtdIns(4,5)P 2, PLC-dependent PtdIns4P and PtdIns hydrolysis was not inhibited by Ca2+ concentrations over 1 mM. The possibility of distinct isozymes being responsible for the different hydrolytic activities is discussed. (Mol Cell Biochem116: 27–31, 1992).Abbreviations DAG sn-1,2-diacylglycerol - EGTA ethyleneglycol-O,O-bis(aminoethyl)-N,N,N,N,-tetraacetic acid - Ins(1,4,5)P 3 inositol 1,4,5-trisphosphate - InsP inositol monophosphate (unidentified isomer) - InsP 2 inositol bisphosphate (unidentified isomer) - InsP 3 inositol trisphosphate (unidentified isomer) - InsP x any inositol phosphate - PLC phospholipase C - PtdIns phosphatidylinositol - PtdIns(4,5)P 2 phosphatidylinositol 4,5-bisphosphate - PtdIns4P phosphatidylinositol 4-monophosphate - SL sarcolemma  相似文献   

6.
J. Mundy  J. C. Rogers 《Planta》1986,169(1):51-63
We have cloned and sequenced a 650-nucleotide cDNA from barley (Hordeum vulgare L.) aleurone layers encoding a protein that is closely related to a known -amylase inhibitor from Indian finger millet (Eleusine coracana Gaertn.), and that has homologies to certain plant trypsin inhibitors. mRNA for this probable amylase/protease inhibitor (PAPI) is expressed primarily in aleurone tissue during late development of the grain, as compared to that for the amylase/subtilisin inhibitor, which is expressed in endosperm during the peak of storage-protein synthesis. PAPI mRNA is present at high levels in aleurone tissue of desiccated, mature grain, and in incubated aleurone layers prepared from rehydrated mature seeds. Its expression in those layers is not affected by either abscisic acid or gibberellic acid, hormones that, respectively, increase and decrease the abundance of mRNA for the amylase/subtilisin inhibitor. PAPI mRNA is almost as abundant in gibberellic acid-treated aleurone layers as that for -amylase, and PAPI protein is synthesized in that tissue at levels that are comparable to -amylase. PAPI protein is secreted from aleurone layers into the incubation medium.Abbreviations ABA abscisic acid - ASI barley amylase/subtilisin inhibitor - bp nucleotide base pairs - Da dalton - dpa days post anthesis - GA3 gibberellic acid - PAPI probable amylase/protease inhibitor - poly(A)RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

7.

Background:  

Phosphatidylinositol 4,5-bisphosphate (PIP2) is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn induces calcium (Ca2+) release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated.  相似文献   

8.
A functional assay for gibberellin (GA) receptors is described based on the induction of -amylase gene expression in isolated aleurone protoplasts of Avena fatua L. by GA4 immobilised to Sepharose beads. A 17-thiol derivative of GA4, shown to be biologically active with aleurone protoplasts, has been coupled to epoxy-activated Sepharose 6B. This GA4-17-Sepharose induces high levels of -amylase when incubated with isolated aleurone protoplasts, while cells of the intact aleurone layer do not respond appreciably to the immobilised GA4. In order to eliminate the possibility that GA4 may be released from the Sepharose when incubated with protoplasts, aleurone layers and isolated aleurone protoplasts have been co-incubated, and their responses to GA4, GA4-17-Sepharose and control Sepharose estimated by determining the relative amounts of -amylase mRNA induced in each tissue. Evidence from these experiments is consistent with the view that GA417-Sepharose induces -amylase gene expression in aleurone protoplasts by interacting with the protoplast surface. This indicates that GA receptors may be located at, or near, the external face of the aleurone plasma membrane.Abbreviation GA(n) gibberellin A(n) We thank Professor Jake MacMillan and Drs. Peter M. Chandler (CSIRO, Division of Plant Industry, Canberra, Australia), Peter Hedden and Johnathan Weir (Unilever, Port Sunlight, UK) for helpful discussions and suggestions. Computer graphics were performed by the University of Bristol Molecular Recognition Centre.  相似文献   

9.
We recently have demonstrated that EGF receptor (EGFR)-induced cell motility requires receptor kinase activity and autophosphorylation (P. Chen, K. Gupta, and A. Wells. 1994. J. Cell Biol. 124:547-555). This suggests that the immediate downstream effector molecule contains a src homology-2 domain. Phospholipase C gamma (PLC gamma) is among the candidate transducers of this signal because of its potential roles in modulating cytoskeletal dynamics. We utilized signaling-restricted EGFR mutants expressed in receptor devoid NR6 cells to determine if PLC activation is necessary for EGFR-mediated cell movement. Exposure to EGF (25 nM) augmented PLC activity in all five EGFR mutant cell lines which also responded by increased cell movement. Basal phosphoinositide turnover was not affected by EGF in the lines which do not present the enhanced motility response. The correlation between EGFR-mediated cell motility and PLC activity suggested, but did not prove, a causal link. A specific inhibitor of PLC, U73122 (1 microM) diminished both the EGF- induced motility and PLC responses, while its inactive analogue U73343 had no effect on these responses. Both the PLC and motility responses were decreased by expression of a dominant-negative PLC gamma-1 fragment in EGF-responsive infectant lines. Lastly, anti-sense oligonucleotides (20 microM) to PLC gamma-1 reduced both responses in NR6 cells expressing wild-type EGFR. These findings strongly support PLC gamma as the immediate post receptor effector in this motogenic pathway. We have demonstrated previously that EGFR-mediated cell motility and mitogenic signaling pathways are separable. The point of divergence is undefined. All kinase-active EGFR mutants induced the mitogenic response while only those which are autophosphorylated induced PLC activity. U73122 did not affect EGF-induced thymidine incorporation in these motility-responsive infectant cell lines. In addition, the dominant-negative PLC gamma-1 fragment did not diminish EGF-induced thymidine incorporation. All kinase active EGFR stimulated mitogen-activated protein (MAP) kinase activity, regardless of whether the receptors induced cell movement; this EGF-induced MAP kinase activity was not affected by U73122 at concentrations that depressed the motility response. Thus, the signaling pathways which lead to motility and cell proliferation diverge at the immediate post-receptor stage, and we suggest that this is accomplished by differential activation of effector molecules.  相似文献   

10.
A number of studies suggest that OLGs (oligodendrocytes), the myelinating cells of the central nervous system, are also a source of trophic molecules, such as neurotrophins that may influence survival of proximate neurons. What is less clear is how the release of these molecules may be regulated. The present study investigated the effects of BDNF (brain-derived neurotrophic factor) derived from cortical OLGs on proximate neurons, as well as regulatory mechanisms mediating BDNF release. Initial work determined that BDNF derived from cortical OLGs increased the numbers of VGLUT1 (vesicular glutamate transporter 1)-positive glutamatergic cortical neurons. Furthermore, glutamate acting through metabotropic, and not AMPA/kainate or NMDA (N-methyl-d-aspartate), receptors increased BDNF release. The PLC (phospholipase C) pathway is a key mediator of metabotropic actions to release BDNF in astrocytes and neurons. Treatment of OLGs with the PLC activator m-3M3FBS [N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide] induced robust release of BDNF. Moreover, release elicited by the metabotropic receptor agonist ACPD [trans-(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] was inhibited by the PLC antagonist U73122, the IP3 (inositol triphosphate 3) receptor inhibitor 2-APB (2-aminoethoxydiphenylborane) and the intracellular calcium chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid tetrakis(acetoxymethyl ester)]. Taken together, these results suggest that OLG lineage cells release BDNF, a molecule trophic for proximate neurons. BDNF release is regulated by glutamate acting through mGluRs (metabotropic glutamate receptors) and the PLC pathway. Thus glutamate and BDNF may be molecules that support neuron–OLG interactions in the cortex.  相似文献   

11.
Conundrum of IP6     
Here are comments on the recent paper on the determination of inositol hexaphosphate (IP6) in human plasma and on its efficacy.Dear Editor(s),Wilson et al. [1] describe a novel method for determination of inositol phosphates in biological fluids and report that, in contrast with previous reports from various other investigators including Grases and co-workers [24], they could not detect inositol hexaphosphate (InsP6 or IP6 in short). This is in agreement with the previous report by Dr Irvine and co-workers [5]. While I cannot comment on the methodology owing to its novelty, I, however, noted that the authors have not provided any information about the humans whose plasma and urine were tested. Grases and co-workers [24] have conclusively and reproducibly demonstrated that in both experimental animals and human volunteers, the level of InsP6 is very low to undetectable if the animals or humans are on an InsP6-deficient diet. However, following a dose of InsP6 supplement or diet containing high InsP6, as in typical Mediterranean diets, substantial amounts of InsP6 are detected in the plasma, urine and other fluids [2]. Therefore, it would be useful to know the dietary habits of the subjects whose plasma and urine were tested; this is, a part of a good and well-planned research design. Were they eating an InsP6-poor diet or InsP6-sufficient diet? A typical ‘fish and chips'' or ‘meat and potato'' diet is not likely to have any InsP6.As if that is not a serious enough flaw in the study design and hence the paper, the authors go on to conclude that since they could not detect InsP6 in their samples of plasma and urine, therefore, InsP6 should not be used as a dietary supplement … an issue that is totally irrelevant to the subject matter of the report and not supported by the data in the paper. In support of their conclusion, the authors draw a straw-man argument about the mineral bioavailability of InsP6 based on outdated information. However, they have not provided any data of their own to support that InsP6 is not safe or biologically ineffective in various diseases reproducibly demonstrated in the literature. Nor have they cited any published study unequivocally demonstrating the toxicity of pure Ca–Mg–InsP6 as it occurs naturally and as dietary supplement. I am not aware of any study that refutes the various biological actions of InsP6. On the contrary, impressive biological effects and multiple mechanisms of action for InsP6 have been reported by different research groups all over the world. Its anti-cancer effect was found to be associated with the modulation of multiple genes involved in immunity, Wnt and IGF pathways, Akt, PI3 kinase, PKC signalling pathways and telomerase activity in leukaemia, breast and prostate cancer [69]. Anti-proliferative effects, induction of apoptosis and differentiation, and angiogenic effects were reported [610]. In addition to anti-cancer effect, other beneficial effects for human health, such as management of the Alzheimer''s disease [11], and obesity and diabetes [12] have been described, highlighting even more mechanisms of action. Clinical studies show that patients on InsP6+inositol supplement enjoy better quality of life in addition to remarkable regression of tumours [1315]. Therefore, I would urge the authors to specifically address these two issues in their response (i) provide their data or published study unequivocally demonstrating the toxicity of pure Ca–Mg–InsP6 and (ii) show the data or reference that it is not biologically active.To the best of my knowledge, lifetime experiments with pure InsP6 in rodents and well-designed human studies have not demonstrated any mineral deficiency or toxicity. A common sense question: Is the menace of cancer, kidney stone and other diseases any less than the hypothetical (and unsubstantiated) putative deficiency of cations that can be easily corrected?There are other flaws in the paper that though may appear minor do, nevertheless, reflect poorly on the report and the authors'' credibility in culling scientific data, e.g. Eiseman et al. [16] studied the pharmacokinetics in mice and not rats as described; the metabolism in the two species are different.Finally, making conclusions and recommendations that are not supported by data and are at variance with logic, may erode public trust in science. Because the field of inositol phosphates and the use of IP6 in human diet have strongly polarized and sharply divided scientists, an open, healthy discussion, and some critical evaluations are needed.  相似文献   

12.
The pancreatic β-cell has served as an important model system for the revelation of new physiological roles for inositides. Initially, our studies were restricted to the role of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) in the regulation of cytoplasmic free calcium concentration ([Ca2+]i), but it soon became clear that other inositol phosphates could also regulate β-cell [Ca2+]i. For example, inositol hexakisphosphate (InsP6) promotes the opening of the key voltage-dependent L-type Ca2+ channels, responsible for Ca2+ influx and the final release of insulin. Furthermore, InsP6 and inositol lipids such as phosphatidylinositol 4,5-bisphosphate are intimately involved the regulation of endocytosis and exocytosis. We now review our most recent work, which has focused on the phosphorylation product of InsP6, diphosphoinositol pentakisphosphate (PP-InsP5 or InsP7). We have established that InsP7 via the activity of the InsP6 kinase, IP6K1, promotes insulin release from the readily releasable pool of vesicles (RRP). The RRP is thought to be synonymous with the first phase of insulin secretion. This has a direct implication for type 2 diabetes, as it is this initial phase of insulin release that is curtailed in the disease. Hints from human genetic linkage studies suggest that disruption of IP6K1 could be a factor in the development of type 2 diabetes and a recent mouse model, where IP6K1 is universally deleted, exhibits lowered plasma insulin levels. Hence, this is yet another important example demonstrating how the β-cell utilizes inositides in the regulation of function. Although we do not fully understand the underlying molecular mechanisms, it is clear that IP6K1-mediated production of InsP7 has an essential role in the regulation of the insulin secretory process.  相似文献   

13.
Protein kinase C has recently attracted considerable attention because of its importance in the control of cell division, cell differentiation, and signal transduction across the cell membrane. The activity of this enzyme is altered by several lipids such as diacylglycerol, free fatty acids, lipoxins, gangliosides, and sulfatides. These lipids may interact with protein kinase C either directly or through calcium ions and produce their regulatory effect (activation or inhibition) on the activities of the enzymes phosphorylated by this kinase. These processes widen our perspective of the regulation of intercellular and intracelluular communication.Abbreviations used (PK-C) Protein kinase C - (cAMP-PK) cAMP dependent protein kinase - (DAG) diacylglycerol - (PtdSer) phosphatidylserine - (InsP 3) inositol 1,4,5-trisphosphate - (PtdIns 4,5-P2) inositol 4,5 bisphosphate - (FFA) free fatty acid - (MBP) myelin basic protein - (ATP) adenosine triphosphate - (GTP) guanine triphosphate - (TPA) 12-tetradecanoylphorbol-13-acetate - (EGF) epidermal growth factor - (PDGF) platelet derived growth factor - (NeuNAc) and N-acetylneuraminic acid  相似文献   

14.
Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.  相似文献   

15.

Background

Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung that matches blood perfusion to alveolar ventilation to optimize gas exchange. Recently we have demonstrated that acute but not sustained HPV is critically dependent on the classical transient receptor potential 6 (TRPC6) channel. However, the mechanism of TRPC6 activation during acute HPV remains elusive. We hypothesize that a diacylglycerol (DAG)-dependent activation of TRPC6 regulates acute HPV.

Methods

We investigated the effect of the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) on normoxic vascular tone in isolated perfused and ventilated mouse lungs from TRPC6-deficient and wild-type mice. Moreover, the effects of OAG, the DAG kinase inhibitor R59949 and the phospholipase C inhibitor U73122 on the strength of HPV were investigated compared to those on non-hypoxia-induced vasoconstriction elicited by the thromboxane mimeticum U46619.

Results

OAG increased normoxic vascular tone in lungs from wild-type mice, but not in lungs from TRPC6-deficient mice. Under conditions of repetitive hypoxic ventilation, OAG as well as R59949 dose-dependently attenuated the strength of acute HPV whereas U46619-induced vasoconstrictions were not reduced. Like OAG, R59949 mimicked HPV, since it induced a dose-dependent vasoconstriction during normoxic ventilation. In contrast, U73122, a blocker of DAG synthesis, inhibited acute HPV whereas U73343, the inactive form of U73122, had no effect on HPV.

Conclusion

These findings support the conclusion that the TRPC6-dependency of acute HPV is induced via DAG.  相似文献   

16.
Group II activators of G-protein signaling play diverse functional roles through their interaction with Gαi, Gαt, and Gαo via a G-protein regulatory (GPR) motif that serves as a docking site for Gα-GDP. We recently reported the regulation of the AGS3-Gαi signaling module by a cell surface, seven-transmembrane receptor. Upon receptor activation, AGS3 reversibly dissociates from the cell cortex, suggesting that it may function as a signal transducer with downstream signaling implications, and this question is addressed in the current report. In HEK-293 and COS-7 cells expressing the α2A/D-AR and Gαi3, receptor activation resulted in the translocation of endogenous AGS3 and AGS3-GFP from the cell cortex to a juxtanuclear region, where it co-localized with markers of the Golgi apparatus (GA). The agonist-induced translocation of AGS3 was reversed by the α2-AR antagonist rauwolscine. The TPR domain of AGS3 was required for agonist-induced translocation of AGS3 from the cell cortex to the GA, and the translocation was blocked by pertussis toxin pretreatment or by the phospholipase Cβ inhibitor U73122. Agonist-induced translocation of AGS3 to the GA altered the functional organization and protein sorting at the trans-Golgi network. The regulated movement of AGS3 between the cell cortex and the GA offers unexpected mechanisms for modulating protein secretion and/or endosome recycling events at the trans-Golgi network.  相似文献   

17.
《The Journal of cell biology》1995,129(5):1263-1273
Lysosomes are recruited to the invasion site during host cell entry by Trypanosoma cruzi, an unusual process suggestive of the triggering of signal transduction mechanisms. Previous studies showed that trypomastigotes, but not the noninfective epimastigotes, contain a proteolytically generated trypomastigote factor (PGTF) that induces intracellular free Ca2+ transients in several mammalian cell types. Using confocal time-lapse imaging of normal rat kidney (NRK) fibroblasts loaded with the Ca(2+)-sensitive dye fluo-3, we show that the initial intracellular free Ca(2+) concentration ([Ca2+]i) transient detected a few seconds after exposure to trypomastigote extracts is a result of Ca2+ release from intracellular stores. Removal of Ca2+ from the extracellular medium or inhibition of Ca2+ channels with NiCl2 did not affect the response to PGTF, while depletion of intracellular stores with thapsigargin abolished it. [Ca2+]i transients induced by PGTF were shown to be coupled to the activity of phospholipase C (PLC), since the specific inhibitor U73122 completely blocked the response, while its inactive analogue U73343 had no effect. In addition, polyphosphoinositide hydrolysis and inositol 1,4,5-trisphosphate (IP3) were detected upon cell stimulation with PGTF, suggesting the participation of IP3-sensitive intracellular Ca2+ channels. An immediate effect of the signaling induced by PGTF and live trypomastigotes was a rapid and transient reorganization of host cell microfilaments. The redistribution of F-actin appeared to be a direct consequence of increased [Ca2+]i, since thrombin and the Ca2+ ionophore ionomycin produced a similar effect, with a time course that corresponded to the kinetics of the elevation in [Ca2+]i. These observations support the hypothesis that PGTF-induced disassembly of the cortical actin cytoskeleton may play a role in T. cruzi invasion, by facilitating lysosome access to the invasion site. Taken together, our findings suggest that the proteolytically generated trypomastigote factor PGTF is a novel agonist that acts through the PLC/phosphoinositide signaling pathway of mammalian cells.  相似文献   

18.
We reported recently that activation of the inositol 1,4,5-triphosphate receptor (IP3R) is required for efficient HIV-1 Gag trafficking and viral particle release. IP3R activation requires phospholipase C (PLC)-catalyzed hydrolysis of PI(4,5)P2 to IP3 and diacylglycerol. We show that Sprouty2 (Spry2), which binds PI(4,5)P2 and PLCγ, interfered with PI(4,5)P2 in a manner similar to that of U73122, an inhibitor of PI(4,5)P2 hydrolysis, suggesting that Spry2 negatively regulates IP3R by preventing formation of its activating ligand, IP3. Mutation to Asp of R252, a crucial determinant of PI(4,5)P2 binding in the C-terminal domain of Spry2, prevented the interference, indicating that binding to the phospholipid is required. By contrast, deletion of the PLCγ binding region or mutation of a critical Tyr residue in the region did not prevent the interference but Spry2-PI(4,5)P2 colocalization was not detected, suggesting that PLC binding is required for their stable association. Like U73122, Spry2 over-expression inhibited wild type Gag release as virus-like particles. Disrupting either binding determinant relieved the inhibition. IP3R-mediated Ca2+signaling, in turn, was found to influence Spry2 subcellular distribution and ERK, a Spry2 regulator. Our findings suggest that Spry2 influences IP3R function through control of PI(4,5)P2 and IP3R influences Spry2 function by controlling its distribution and ERK activation.  相似文献   

19.

Aims

The local concentration of extracellular Ca2+ ([Ca2+]o) in bone microenvironment is accumulated during bone remodeling. In the present study we investigated whether elevating [Ca2+]o induced store-operated calcium entry (SOCE) in primary rat calvarial osteoblasts and further examined the contribution of elevating [Ca2+]o to osteoblastic proliferation.

Methods

Cytosolic Ca2+ concentration ([Ca2+]c) of primary cultured rat osteoblasts was detected by fluorescence imaging using calcium-sensitive probe fura-2/AM. Osteoblastic proliferation was estimated by cell counting, MTS assay and ATP assay. Agonists and antagonists of calcium-sensing receptors (CaSR) as well as inhibitors of phospholipase C (PLC), SOCE and voltage-gated calcium (Cav) channels were applied to study the mechanism in detail.

Results

Our data showed that elevating [Ca2+]o evoked a sustained increase of [Ca2+]c in a dose-dependent manner. This [Ca2+]c increase was blocked by TMB-8 (Ca2+ release inhibitor), 2-APB and BTP-2 (both SOCE blockers), respectively, whereas not affected by Cav channels blockers nifedipine and verapamil. Furthermore, NPS2143 (a CaSR antagonist) or U73122 (a PLC inhibitor) strongly reduced the [Ca2+]o-induced [Ca2+]c increase. The similar responses were observed when cells were stimulated with CaSR agonist spermine. These data indicated that elevating [Ca2+]o resulted in SOCE depending on the activation of CaSR and PLC in osteoblasts. In addition, high [Ca2+]o significantly promoted osteoblastic proliferation, which was notably reversed by BAPTA-AM (an intracellular calcium chelator), 2-APB, BTP-2, TMB-8, NPS2143 and U73122, respectively, but not affected by Cav channels antagonists.

Conclusions

Elevating [Ca2+]o induced SOCE by triggering the activation of CaSR and PLC. This process was involved in osteoblastic proliferation induced by high level of extracellular Ca2+ concentration.  相似文献   

20.
Roger C. Hardie   《Cell calcium》2003,33(5-6):385
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP2). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号