首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: We introduce a novel approach to multiple alignment that is based on an algorithm for rapidly checking whether single matches are consistent with a partial multiple alignment. This leads to a sequence annealing algorithm, which is an incremental method for building multiple sequence alignments one match at a time. Our approach improves significantly on the standard progressive alignment approach to multiple alignment. RESULTS: The sequence annealing algorithm performs well on benchmark test sets of protein sequences. It is not only sensitive, but also specific, drastically reducing the number of incorrectly aligned residues in comparison to other programs. The method allows for adjustment of the sensitivity/specificity tradeoff and can be used to reliably identify homologous regions among protein sequences. AVAILABILITY: An implementation of the sequence annealing algorithm is available at http://bio.math.berkeley.edu/amap/  相似文献   

2.
MOTIVATION: Protein families evolve a multiplicity of functions through gene duplication, speciation and other processes. As a number of studies have shown, standard methods of protein function prediction produce systematic errors on these data. Phylogenomic analysis--combining phylogenetic tree construction, integration of experimental data and differentiation of orthologs and paralogs--has been proposed to address these errors and improve the accuracy of functional classification. The explicit integration of structure prediction and analysis in this framework, which we call structural phylogenomics, provides additional insights into protein superfamily evolution. RESULTS: Results of protein functional classification using phylogenomic analysis show fewer expected false positives overall than when pairwise methods of functional classification are employed. We present an overview of the motivations and fundamental principles of phylogenomic analysis, new methods developed for the key tasks, benchmark datasets for these tasks (when available) and suggest procedures to increase accuracy. We also discuss some of the methods used in the Celera Genomics high-throughput phylogenomic classification of the human genome. AVAILABILITY: Software tools from the Berkeley Phylogenomics Group are available at http://phylogenomics.berkeley.edu  相似文献   

3.
Phylogeny estimation is extremely crucial in the study of molecular evolution. The increase in the amount of available genomic data facilitates phylogeny estimation from multilocus sequence data. Although maximum likelihood and Bayesian methods are available for phylogeny reconstruction using multilocus sequence data, these methods require heavy computation, and their application is limited to the analysis of a moderate number of genes and taxa. Distance matrix methods present suitable alternatives for analyzing huge amounts of sequence data. However, the manner in which distance methods can be applied to multilocus sequence data remains unknown. Here, we suggest new procedures to estimate molecular phylogeny using multilocus sequence data and evaluate its significance in the framework of the distance method. We found that concatenation of the multilocus sequence data may result in incorrect phylogeny estimation with an extremely high bootstrap probability (BP), which is due to incorrect estimation of the distances and intentional ignorance of the intergene variations. Therefore, we suggest that the distance matrices for multilocus sequence data be estimated separately and these matrices be subsequently combined to reconstruct phylogeny instead of phylogeny reconstruction using concatenated sequence data. To calculate the BPs of the reconstructed phylogeny, we suggest that 2-stage bootstrap procedures be adopted; in this, genes are resampled followed by resampling of the sequence columns within the resampled genes. By resampling the genes during calculation of BPs, intergene variations are properly considered. Via simulation studies and empirical data analysis, we demonstrate that our 2-stage bootstrap procedures are more suitable than the conventional bootstrap procedure that is adopted after sequence concatenation.  相似文献   

4.
Bondugula R  Xu D 《Proteins》2007,66(3):664-670
Predicting secondary structures from a protein sequence is an important step for characterizing the structural properties of a protein. Existing methods for protein secondary structure prediction can be broadly classified into template based or sequence profile based methods. We propose a novel framework that bridges the gap between the two fundamentally different approaches. Our framework integrates the information from the fuzzy k-nearest neighbor algorithm and position-specific scoring matrices using a neural network. It combines the strengths of the two methods and has a better potential to use the information in both the sequence and structure databases than existing methods. We implemented the framework into a software system MUPRED. MUPRED has achieved three-state prediction accuracy (Q3) ranging from 79.2 to 80.14%, depending on which benchmark dataset is used. A higher Q3 can be achieved if a query protein has a significant sequence identity (>25%) to a template in PDB. MUPRED also estimates the prediction accuracy at the individual residue level more quantitatively than existing methods. The MUPRED web server and executables are freely available at http://digbio.missouri.edu/mupred.  相似文献   

5.
Bagging to improve the accuracy of a clustering procedure   总被引:5,自引:0,他引:5  
MOTIVATION: The microarray technology is increasingly being applied in biological and medical research to address a wide range of problems such as the classification of tumors. An important statistical question associated with tumor classification is the identification of new tumor classes using gene expression profiles. Essential aspects of this clustering problem include identifying accurate partitions of the tumor samples into clusters and assessing the confidence of cluster assignments for individual samples. RESULTS: Two new resampling methods, inspired from bagging in prediction, are proposed to improve and assess the accuracy of a given clustering procedure. In these ensemble methods, a partitioning clustering procedure is applied to bootstrap learning sets and the resulting multiple partitions are combined by voting or the creation of a new dissimilarity matrix. As in prediction, the motivation behind bagging is to reduce variability in the partitioning results via averaging. The performances of the new and existing methods were compared using simulated data and gene expression data from two recently published cancer microarray studies. The bagged clustering procedures were in general at least as accurate and often substantially more accurate than a single application of the partitioning clustering procedure. A valuable by-product of bagged clustering are the cluster votes which can be used to assess the confidence of cluster assignments for individual observations. SUPPLEMENTARY INFORMATION: For supplementary information on datasets, analyses, and software, consult http://www.stat.berkeley.edu/~sandrine and http://www.bioconductor.org.  相似文献   

6.
We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment—previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches—yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/.  相似文献   

7.
MOTIVATION: We propose a general method for deriving amino acid substitution matrices from low resolution force fields. Unlike current popular methods, the approach does not rely on evolutionary arguments or alignment of sequences or structures. Instead, residues are computationally mutated and their contribution to the total energy/score is collected. The average of these values over each position within a set of proteins results in a substitution matrix. RESULTS: Example substitution matrices have been calculated from force fields based on different philosophies and their performance compared with conventional substitution matrices. Although this can produce useful substitution matrices, the methodology highlights the virtues, deficiencies and biases of the source force fields. It also allows a rather direct comparison of sequence alignment methods with the score functions underlying protein sequence to structure threading. AVAILABILITY: Example substitution matrices are available from http://www.rsc.anu.edu.au/~zsuzsa/suppl/matrices.html. SUPPLEMENTARY INFORMATION: The list of proteins used for data collection and the optimized parameters for the alignment are given as supplementary material at http://www.rsc.anu.edu.au/~zsuzsa/suppl/matrices.html.  相似文献   

8.
We propose a detailed protein structure alignment method named "MatAlign". It is a two-step algorithm. Firstly, we represent 3D protein structures as 2D distance matrices, and align these matrices by means of dynamic programming in order to find the initially aligned residue pairs. Secondly, we refine the initial alignment iteratively into the optimal one according to an objective scoring function. We compare our method against DALI and CE, which are among the most accurate and the most widely used of the existing structural comparison tools. On the benchmark set of 68 protein structure pairs by Fischer et al., MatAlign provides better alignment results, according to four different criteria, than both DALI and CE in a majority of cases. MatAlign also performs as well in structural database search as DALI does, and much better than CE does. MatAlign is about two to three times faster than DALI, and has about the same speed as CE. The software and the supplementary information for this paper are available at http://xena1.ddns.comp.nus.edu.sg/~genesis/MatAlign/.  相似文献   

9.
SUMMARY: A public server for evaluating the accuracy of protein sequence alignment methods is presented. CASA is an implementation of the alignment accuracy benchmark presented by Sauder et al. (Proteins, 40, 6-22, 2000). The benchmark currently contains 39321 pairwise protein structure alignments produced with the CE program from SCOP domain definitions. The server produces graphical and tabular comparisons of the accuracy of a user's input sequence alignments with other commonly used programs, such as BLAST, PSI-BLAST, Clustal W, and SAM-T99. AVAILABILITY: The server is located at http://capb.dbi.udel.edu/casa.  相似文献   

10.
Protein backbone angle prediction with machine learning approaches   总被引:2,自引:0,他引:2  
MOTIVATION: Protein backbone torsion angle prediction provides useful local structural information that goes beyond conventional three-state (alpha, beta and coil) secondary structure predictions. Accurate prediction of protein backbone torsion angles will substantially improve modeling procedures for local structures of protein sequence segments, especially in modeling loop conformations that do not form regular structures as in alpha-helices or beta-strands. RESULTS: We have devised two novel automated methods in protein backbone conformational state prediction: one method is based on support vector machines (SVMs); the other method combines a standard feed-forward back-propagation artificial neural network (NN) with a local structure-based sequence profile database (LSBSP1). Extensive benchmark experiments demonstrate that both methods have improved the prediction accuracy rate over the previously published methods for conformation state prediction when using an alphabet of three or four states. AVAILABILITY: LSBSP1 and the NN algorithm have been implemented in PrISM.1, which is available from www.columbia.edu/~ay1/. SUPPLEMENTARY INFORMATION: Supplementary data for the SVM method can be downloaded from the Website www.cs.columbia.edu/compbio/backbone.  相似文献   

11.
Assembly algorithms have been extensively benchmarked using simulated data so that results can be compared to ground truth. However, in de novo assembly, only crude metrics such as contig number and size are typically used to evaluate assembly quality. We present CGAL, a novel likelihood-based approach to assembly assessment in the absence of a ground truth. We show that likelihood is more accurate than other metrics currently used for evaluating assemblies, and describe its application to the optimization and comparison of assembly algorithms. Our methods are implemented in software that is freely available at http://bio.math.berkeley.edu/cgal/.  相似文献   

12.
Pvclust: an R package for assessing the uncertainty in hierarchical clustering   总被引:11,自引:0,他引:11  
SUMMARY: Pvclust is an add-on package for a statistical software R to assess the uncertainty in hierarchical cluster analysis. Pvclust can be used easily for general statistical problems, such as DNA microarray analysis, to perform the bootstrap analysis of clustering, which has been popular in phylogenetic analysis. Pvclust calculates probability values (p-values) for each cluster using bootstrap resampling techniques. Two types of p-values are available: approximately unbiased (AU) p-value and bootstrap probability (BP) value. Multiscale bootstrap resampling is used for the calculation of AU p-value, which has superiority in bias over BP value calculated by the ordinary bootstrap resampling. In addition the computation time can be enormously decreased with parallel computing option.  相似文献   

13.
We present a method that compares the protein interaction networks of two species to detect functionally similar (conserved) protein modules between them. The method is based on an algorithm we developed to identify matching subgraphs between two graphs. Unlike previous network comparison methods, our algorithm has provable guarantees on correctness and efficiency. Our algorithm framework also admits quite general criteria that define when two subgraphs match and constitute a conserved module. We apply our method to pairwise comparisons of the yeast protein network with the human, fruit fly and nematode worm protein networks, using a lenient criterion based on connectedness and matching edges, coupled with a clustering heuristic. In evaluations of the detected conserved modules against reference yeast protein complexes, our method performs competitively with and sometimes better than two previous network comparison methods. Further, under some conditions (proper homolog and species selection), our method performs better than a popular single-species clustering method. Beyond these evaluations, we discuss the biology of a couple of conserved modules detected by our method. We demonstrate the utility of network comparison for transferring annotations from yeast proteins to human ones, and validate the predicted annotations. Supplemental text is available at www.cs.berkeley.edu/ approximately nmani/M-and-S/supplement.pdf.  相似文献   

14.
15.
Qiu J  Elber R 《Proteins》2006,62(4):881-891
In template-based modeling of protein structures, the generation of the alignment between the target and the template is a critical step that significantly affects the accuracy of the final model. This paper proposes an alignment algorithm SSALN that learns substitution matrices and position-specific gap penalties from a database of structurally aligned protein pairs. In addition to the amino acid sequence information, secondary structure and solvent accessibility information of a position are used to derive substitution scores and position-specific gap penalties. In a test set of CASP5 targets, SSALN outperforms sequence alignment methods such as a Smith-Waterman algorithm with BLOSUM50 and PSI_BLAST. SSALN also generates better alignments than PSI_BLAST in the CASP6 test set. LOOPP server prediction based on an SSALN alignment is ranked the best for target T0280_1 in CASP6. SSALN is also compared with several threading methods and sequence alignment methods on the ProSup benchmark. SSALN has the highest alignment accuracy among the methods compared. On the Fischer's benchmark, SSALN performs better than CLUSTALW and GenTHREADER, and generates more alignments with accuracy >50%, >60% or >70% than FUGUE, but fewer alignments with accuracy >80% than FUGUE. All the supplemental materials can be found at http://www.cs.cornell.edu/ approximately jianq/research.htm.  相似文献   

16.
Many methods have been described to predict the subcellular location of proteins from sequence information. However, most of these methods either rely on global sequence properties or use a set of known protein targeting motifs to predict protein localization. Here, we develop and test a novel method that identifies potential targeting motifs using a discriminative approach based on hidden Markov models (discriminative HMMs). These models search for motifs that are present in a compartment but absent in other, nearby, compartments by utilizing an hierarchical structure that mimics the protein sorting mechanism. We show that both discriminative motif finding and the hierarchical structure improve localization prediction on a benchmark data set of yeast proteins. The motifs identified can be mapped to known targeting motifs and they are more conserved than the average protein sequence. Using our motif-based predictions, we can identify potential annotation errors in public databases for the location of some of the proteins. A software implementation and the data set described in this paper are available from http://murphylab.web.cmu.edu/software/2009_TCBB_motif/.  相似文献   

17.
J Hargbo  A Elofsson 《Proteins》1999,36(1):68-76
There are many proteins that share the same fold but have no clear sequence similarity. To predict the structure of these proteins, so called "protein fold recognition methods" have been developed. During the last few years, improvements of protein fold recognition methods have been achieved through the use of predicted secondary structures (Rice and Eisenberg, J Mol Biol 1997;267:1026-1038), as well as by using multiple sequence alignments in the form of hidden Markov models (HMM) (Karplus et al., Proteins Suppl 1997;1:134-139). To test the performance of different fold recognition methods, we have developed a rigorous benchmark where representatives for all proteins of known structure are matched against each other. Using this benchmark, we have compared the performance of automatically-created hidden Markov models with standard-sequence-search methods. Further, we combine the use of predicted secondary structures and multiple sequence alignments into a combined method that performs better than methods that do not use this combination of information. Using only single sequences, the correct fold of a protein was detected for 10% of the test cases in our benchmark. Including multiple sequence information increased this number to 16%, and when predicted secondary structure information was included as well, the fold was correctly identified in 20% of the cases. Moreover, if the correct secondary structure was used, 27% of the proteins could be correctly matched to a fold. For comparison, blast2, fasta, and ssearch identifies the fold correctly in 13-17% of the cases. Thus, standard pairwise sequence search methods perform almost as well as hidden Markov models in our benchmark. This is probably because the automatically-created multiple sequence alignments used in this study do not contain enough diversity and because the current generation of hidden Markov models do not perform very well when built from a few sequences.  相似文献   

18.
Difference density maps are commonly used in structural biology for identifying conformational changes in macromolecular complexes. For interpretation of the results, it is essential to estimate the variance or standard deviation of the difference density and the distribution of errors in space. In order to compare three-dimensional density maps of gap junction channels with and without the C-terminal regulatory domain, we developed a bootstrap resampling method for estimation of the voxel-wise standard deviation. The bootstrap approach has been successfully used for estimating the sampling distribution from a limited data set and for estimating the statistical properties of the derived quantities [Efron, B., 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1-26]. In our application, the standard deviation map can be estimated by bootstrapping the images. Our results show that, apart from the symmetry axes and small regions bordering the lumen of the extracellular vestibule, difference maps normalized by the mean of the standard deviation map can be used as a good approximation of the t-test map of the gap junction crystals.  相似文献   

19.
MOTIVATION: Identification of short conserved sequence motifs common to a protein family or superfamily can be more useful than overall sequence similarity in suggesting the function of novel gene products. Locating motifs still requires expert knowledge, as automated methods using stringent criteria may not differentiate subtle similarities from statistical noise. RESULTS: We have developed a novel automatic method, based on patterns of conservation of 237 physical-chemical properties of amino acids in aligned protein sequences, to find related motifs in proteins with little or no overall sequence similarity. As an application, our web-server MASIA identified 12 property-based motifs in the apurinic/apyrimidinic endonuclease (APE) family of DNA-repair enzymes of the DNase-I superfamily. Searching with these motifs located distantly related representatives of the DNase-I superfamily, such as Inositol 5'-polyphosphate phosphatases in the ASTRAL40 database, using a Bayesian scoring function. Other proteins containing APE motifs had no overall sequence or structural similarity. However, all were phosphatases and/or had a metal ion binding active site. Thus our automated method can identify discrete elements in distantly related proteins that define local structure and aspects of function. We anticipate that our method will complement existing ones to functionally annotate novel protein sequences from genomic projects. AVAILABILITY: MASIA WEB site: http://www.scsb.utmb.edu/masia/masia.html SUPPLEMENTARY INFORMATION: The dendrogram of 42 APE sequences used to derive motifs is available on http://www.scsb.utmb.edu/comp_biol.html/DNA_repair/publication.html  相似文献   

20.
Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor, support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms, BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and random sampling was used to construct model datasets, suitable for algorithm comparison.

The datasets are available at http://hydra.icgeb.trieste.it/benchmark.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号