首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have established a unique enzymatic approach for obtaining sulfated disaccharides using Bacillus circulans beta-D-galactosidase-catalyzed 6-sulfo galactosylation. When 4-methyl umbelliferyl 6-sulfo beta-D-galactopyranoside (S6Gal beta-4MU) was used as a donor, the enzyme induced transfer of 6-sulfo galactosyl residue to GlcNAc acceptor. As a result, the desired compound 6'-sulfo N-acetyllactosamine (S6Gal beta1-4GlcNAc) and its positional isomer 6'-sulfo N-acetylisolactosamine (S6Gal beta1-6GlcNAc) were observed by HPAEC-PAD, in 49% total yield based on the donor added, and in a molar ratio of 1:3.5. With a glucose acceptor, the regioselectivity was substantially changed and S6Gal beta1-2Glc was mainly produced along with beta-(1-1)alpha, beta-(1-3), beta-(1-6) isomers in 74% total yield. When methyl alpha-D-glucopyranoside (Glc alpha-OMe) was an acceptor, the enzyme also formed mainly S6Gal beta1-2Glc alpha-OMe with its beta-(1-6)-linked isomer in 41% total yield based on the donor added. In both cases, it led to the predominant formation of beta-(1-2)-linked disaccharides. In contrast, with the corresponding methyl beta-D-glucopyranoside (Glc beta-OMe) acceptor, S6Gal beta1-3Glc beta-OMe and S6Gal beta1-6Glc beta-OMe were formed in a low total yield of 12%. These results indicate that the regioselectivity and efficiency on the beta-D-galactosidase-mediated transfer reaction significantly depend on the anomeric configuration in the glucosyl acceptors.  相似文献   

2.
The capacity of UDP-N-acetyl-alpha-D-glucosamine (UDP-GlcNAc) as an in vitro acceptor substrate for beta-1,4-galactosyltransferase (beta4GalT1, EC 2.4.1.38) from human and bovine milk and for recombinant human beta4GalT1, expressed in Saccharomyces cerevisiae, was evaluated. It turned out that each of the enzymes is capable to transfer Gal from UDP-alpha-D-galactose (UDP-Gal) to UDP-GlcNAc, affording Gal(beta1-4)GlcNAc(alpha1-UDP (UDP-LacNAc). Using beta4GalT1 from human milk, a preparative enzymatic synthesis of UDP-LacNAc was carried out, and the product was characterized by fast-atom bombardment mass spectrometry and 1H and 13C NMR spectroscopy. Studies with all three beta4GalTs in the presence of alpha-lactalbumin showed that the UDP-LacNAc synthesis is inhibited and that UDP-alpha-D-glucose is not an acceptor substrate. This is the first reported synthesis of a nucleotide-activated disaccharide, employing a Leloir glycosyltransferase with a nucleotide-activated monosaccharide as acceptor substrate. Interestingly, in these studies beta4GalT1 accepts an alpha-glycosidated GlcNAc derivative. The results imply that beta4GalT1 may be responsible for the biosynthesis of UDP-LacNAc, previously isolated from human milk.  相似文献   

3.
Incubation of UDP-GlcNAc and radiolabeled GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (1) with human serum resulted in the formation of the branched hexasaccharide GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (2) in yields of up to 22.2%. The novel reaction represents midchain branching of the linear acceptor; the previously known branching reactions of oligo-(N-acetyllactosaminoglycans) involve the nonreducing end of the growing saccharide chains. The structure of 2 was established by use of appropriate isotopic isomers of it for degradative experiments. The hexasaccharide 2 was cleaved by an exhaustive treatment with jack bean beta-N-acetylhexosaminidase, liberating two GlcNAc units and the tetrasaccharide Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (3). Endo-beta-galactosidase from Bacteroides fragilis cleaved 2 at one site only, yielding the disaccharide GlcNAc beta 1-3Gal (4) and the branched tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (5). The structure of 5 was established by partial acid hydrolysis and subsequent identification of the disaccharide GlcNAc beta 1-6Gal (6), together with the trisaccharides GlcNAc beta 1-6Gal beta 1-4GlcNAc (7) and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (8) among the cleavage products. Galactosylation of 2 with bovine milk beta 1,4-galactosyltransferase and UDP-[6-3H]Gal gave the octasaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3 Gal beta 1-4GlcNAc beta 1-3([6-3H]-Gal beta 1-4GlcNAc beta 1-6)[U-14C] Gal beta 1-4GlcNAc (17), which could be cleaved with endo-beta-galactosidase into the trisaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3Gal (18) and the branched pentasaccharide GlcNAc beta 1-3-([6-3H]Gal beta 1-4GlcNAc beta 1-6) [U-14C]Gal beta 1-4GlcNAc (19). Partial hydrolysis of 2 with jack-bean beta-N-acetylhexosaminidase gave the linear pentasaccharide 1 and the branched pentasaccharide Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (20). The serum beta 1,6-GlcNAc transferase catalyzed also the formation of GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (11) from UDP-GlcNAc and GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc (10). The pentasaccharide Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (16), too, served as an acceptor for the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Carbohydrates were extracted from hooded seal milk, Crystophora cristata (family Phocidae). Free oligosaccharides were separated by gel filtration and then purified by ion exchange chromatography, gel filtration and preparative thin layer or paper chromatography and their structures determined by 1H-NMR. The hooded seal milk was found to contain inositol and at least nine oligosaccharides, most of which had lacto-N-neotetraose or lacto-N-neohexaose as core units, similar to those in milk of other species of Carnivora such as bears (Ursidae). Their structures were as follows: Gal(beta1-4)Glc (lactose); Fuc(alpha1-2)Gal(beta1-4)Glc (2'-fucosyllactose); Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (lacto-N-fucopentaose IV); Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(1-4)Glc (lacto-N-neohexaose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (monofucosyl lacto-N-neohexaose a); Gal(beta1-4)GlcNAc(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (monofucosyl lacto-N-neohexaose b); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (difucosyl lacto-N-neohexaose); Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (para lacto-N-neohexaose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (monofucosyl para lacto-N-neohexaose). Milk of the Australian fur seal, Arctophalus pusillus doriferus (family Otariidae) contained inositol but no lactose or free oligosaccharides. These results, therefore, support the hypothesis that the milk of otariids, unlike that of phocids, contains no free reducing saccharides.  相似文献   

5.
Carbohydrates were extracted from the milk of a beluga, Delphinopterus leucas (family Odontoceti), and two Minke whales, Balaenoptera acutorostrata (Family Mysticeti), sampled late in their respective lactation periods. Free oligosaccharides were separated by gel filtration and then neutral oligosaccharides were purified by preparative thin layer chromatography and gel filtration, while acidic oligosaccharides were purified by ion-exchange chromatography, gel filtration and high performance liquid chromatography (HPLC). Their structures were determined by 1H-NMR. In one of the Minke whale milk samples, lactose was a dominant saccharide, with Fuc(alpha1-2)Gal(beta1-4)Glc(2'-fucosyllactose), Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc(lacto-N-neotetraose), GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc(A-tetrasaccharide), Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (para lacto-N-neohexaose), Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (sialyl lacto-N-neotetraose), Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LST c) and Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (sialyl para lacto-N-neohexaose) also being found in the milk. The second Minke whale sample contained similar amounts of lactose, 2'-fucosyllactose and A-tetrasaccharide, but no free sialyl oligosaccharides. Sialyl lacto-N-neotetraose and sialyl para lacto-N-neohexaose are novel oligosaccharides which have not been previously reported from any mammalian milk or colostrum. These and other oligosaccharides of Minke whale milk may have biological significance as anti-infection factors, protecting the suckling young against bacteria and viruses. The lactose of Minke whale milk could be a source of energy for them. The beluga whale milk contained trace amounts of Neu5Ac(alpha2-3)Gal(beta1-4)Glc(3'-N-acetylneuraminyllactose), but the question of whether it contained free lactose could not be clarified. Therefore, lactose may not be a source of energy for suckling beluga whales.  相似文献   

6.
Human blood group O plasma was found to contain an N-acetylgalactosaminyltransferase which catalyzes the transfer of N-acetylgalactosamine from UDP-GalNAc to Gal beta 1-->4Glc, Gal beta 1-->4GlcNAc, asialo-alpha 1-acid glycoprotein, and Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-ceramide, but not to Gal beta 1-->3GlcNAc. The enzyme required Mn2+ for its activity and showed a pH optimum at 7.0. The reaction products were readily hydrolyzed by beta-N-acetylhexosaminidase and released N-acetylgalactosamine. Apparent Km values for UDP-GalNAc, Mn2+, lactose, N-acetyllactosamine, and terminal N-acetyllactosaminyl residues of asialo-alpha 1-acid glycoprotein were 0.64, 0.28, 69, 20, and 1.5 mM, respectively. Studies on acceptor substrate competition indicated that all the acceptor substrates mentioned above compete for one enzyme, whereas the enzyme can be distinguished from an NeuAc alpha 2-->3Gal beta-1,4-N-acetylgalactosaminyltransferase, which also occurs in human plasma. The methylation study of the product formed by the transfer of N-acetylgalactosamine to lactose revealed that N-acetylgalactosamine had been transferred to the carbon-3 position of the beta-galactosyl residue. Although the GalNAc beta 1-->3Gal structure is known to have the blood group P antigen activity, human plasma showed no detectable activity of Gal alpha 1-->4Gal beta-1,3-N-acetylgalactosaminyltransferase, which is involved in the synthesis of the major P antigen-active glycolipid, GalNAc beta 1-->3Gal alpha 1-->4Gal beta 1-->4Glc-ceramide. Hence, the GalNAc beta 1-->3Gal beta 1-->4GlcNAc/Glc structure is synthesized by the novel Gal beta 1-->4GlcNAc/Glc beta-1,3-N-acetylgalactosaminyltransferase.  相似文献   

7.
Lacto-N-tetraose (Galbeta1 -3GlcNAcbeta1-3Galbeta1-4Glc, LNT) and lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc, LNnT) were enzymatically synthesized by consecutive additions of GlcNAc and Gal residues to lactose. Lacto-N-triose II (GlcNAcbeta1-3Galbeta1-4Glc) was prepared first by the transfer of GlcNAc from UDP-GlcNAc to lactose by beta-1,3-N-acetylglucosaminyltransferase from bovine serum. The resulting lacto-N-triose II was converted into LNT and LNnT utilizing two kinds of beta-D-galactosidase-mediated transglycosylations. Thus, beta-D-galactosidase from Bacillus circulans ATCC31382 induced regioselective galactosyl transfer from o-nitrophenyl beta-D-galactoside to the OH-3" position of lacto-N-triose II, and commercially available beta-D-galactosidase from B. circulans to the OH-4" position of lacto-N-triose II. These convenient processes are suitable for large-scale preparations of LNT and LNnT. As another method, LNT was directly synthesized from lactose as an initial substance, utilizing lacto-N-biosidase (Aureobacterium sp. L-101)-mediated transglycosylation with Galbeta1-3GlcNAcbeta-pNP donor.  相似文献   

8.
When fed to a beta-galactosidase-negative (lacZ(-)) Escherichia coli strain that was grown on an alternative carbon source (such as glycerol), lactose accumulated intracellularly on induction of the lactose permease. We showed that intracellular lactose was efficiently glycosylated when genes of glycosyltransferase that use lactose as acceptor were expressed. High-cell-density cultivation of lacZ(-) strains that overexpressed the beta 1,3 N acetyl glucosaminyltransferase lgtA gene of Neisseria meningitidis resulted in the synthesis of 6 g x L(-1) of the expected trisaccharide (GlcNAc beta 1-3Gal beta 1-4Glc). When the beta 1,4 galactosyltransferase lgtB gene of N. meningitidis was coexpressed with lgtA, the trisaccharide was further converted to lacto-N-neotetraose (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc) and lacto-N-neoheaxose with a yield higher than 5 g x L(-1). In a similar way, the nanA(-) E. coli strain that was devoid of NeuAc aldolase activity accumulated NeuAc on induction of the NanT permease and the lacZ(-) nanA(-) strain that overexpressed the N. meningitidis genes of the alpha2,3 sialyltransferase and of the CMP-NeuAc synthase efficiently produced sialyllactose (NeuAc alpha 2-3Gal beta 1-4Glc) from exogenous NeuAc and lactose.  相似文献   

9.
We previously described a bacterial fermentation process for the in vivo conversion of lactose into fucosylated derivatives of lacto-N-neotetraose Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LNnT). The major product obtained was lacto-N-neofucopentaose-V Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, carrying fucose on the glucosyl residue of LNnT. Only a small amount of oligosaccharides fucosylated on N-acetylglucosaminyl residues and thus carrying the LewisX group (Le(X)) was also produced. We report here a fermentation process for the large-scale production of Le(X) oligosaccharides. The two fucosyltransferase genes futA and futB of Helicobacter pylori (strain 26695) were compared in order to optimize fucosylation in vivo. futA was found to provide the best activity on the LNnT acceptor, whereas futB expressed a better Le(X) activity in vitro. Both genes were expressed to produce oligosaccharides in engineered Escherichia coli (E. coli) cells. The fucosylation pattern of the recombinant oligosaccharides was closely correlated with the specificity observed in vitro, FutB favoring the formation of Le(X) carrying oligosaccharides. Lacto-N-neodifucohexaose-II Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc represented 70% of the total oligosaccharide amount of futA-on-driven fermentation and was produced at a concentration of 1.7 g/L. Fermentation driven by futB led to equal amounts of both lacto-N-neofucopentaose-V and lacto-N-neofucopentaose-II Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, produced at 280 and 260 mg/L, respectively. Unexpectedly, a noticeable proportion (0.5 g/L) of the human milk oligosaccharide 3-fucosyllactose Gal(beta1-4)[Fuc(alpha1-3)]Glc was produced in futA-on-driven fermentation, underlining the activity of fucosyltransferase FutA in E. coli and leading to a reassessment of its activity on lactose. All oligosaccharides produced by the products of both fut genes were natural compounds of human milk.  相似文献   

10.
Tammar wallaby (Macropus eugenii) mammary glands contain a UDP-GlcNAc:Gal beta 1----3Gal beta 1----4Glc beta 1----6-N-acetylglucosaminyltransferase (GlcNAcT) whose activity has been characterized with respect to the effect of pH, apparent Km for acceptor, effects of bivalent metal ions, acceptor specificity and identity of products. The enzyme did not show an absolute requirement for any bivalent metal ion but its activity was increased markedly by Mg2+, Ca2+ and Ba2+ and, to a lesser extent, by Mn2+. When Gal beta 1----3Gal beta 1----4Glc was used as acceptor, the product was Gal beta 1----3[GlcNAc beta 1----6]Gal beta 1----4Glc. With Gal beta 1----3Gal beta 1----3Gal beta 1----4Glc as acceptor, the product was shown, by 1H-NMR spectroscopy and exo-beta-galactosidase digestion, to be a novel pentasaccharide with the structure Gal beta 1----3[GlcNAc beta 1----6]Gal beta 1----3Gal beta 1----4Glc, suggesting that the enzyme recognises the non-reducing end of the acceptor substrate, rather than the reducing end.  相似文献   

11.
We have purified, to apparent homogeneity, a mucin beta 6N-acetylglucosaminyltransferase (beta 6GlcNAc transferase) from bovine tracheal epithelium. Golgi membranes were isolated from a 0.25 M sucrose homogenate of epithelial scrapings by discontinuous sucrose gradient centrifugation. The Golgi membranes were solubilized with 1% Triton X-100 in the presence of 1 mM Gal beta 1-3GalNAc alpha benzyl (Bzl) to stabilize the beta 6GlcNAc transferase. The solubilized enzyme was bound to a UDP-hexanolamine-Actigel-ALD Superflow affinity column equilibrated with 1 mM Gal beta 1-3GalNAc alpha Bzl and 5 mM Mn2+. Elution of the enzyme with 0.5 mM UDP-GlcNAc resulted in a 133,800-fold purification with a 1.3% yield and a specific activity of 70 mumol/min/mg protein. Radioiodination of the purified enzyme followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed a single band at 69,000 Da. Kinetic analyses of the beta 6GlcNAc transferase-catalyzed reaction showed an ordered sequential mechanism in which UDP-GlcNAc binds to the enzyme first and UDP is released last. The Km values for UDP-GlcNAc and Gal beta 1-3GalNAc alpha Bzl were 0.36 and 0.14 mM, respectively. Acceptor competition studies showed that the purified beta 6GlcNAc transferase can use core 1 and core 3 mucin oligosaccharides as well as GlcNAc beta 1-3Gal beta R as acceptor substrates. Proton NMR analyses of the three products demonstrated that GlcNAc was added in a beta 1-6 linkage to the penultimate GalNAc or Gal, suggesting that this enzyme is capable of synthesizing all beta 6GlcNAc structures found in mucin-type oligosaccharides.  相似文献   

12.
The oligosaccharides present in the milk of an African elephant (Loxodonta africana africana), collected 4 days post partum, were separated by size exclusion-, anion exchange- and high-performance liquid chromatography (HPLC) before characterisation by (1)H NMR spectroscopy. Neutral and acidic oligosaccharides were identified. Neutral oligosaccharides characterised were isoglobotriose, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and a novel oligosaccharide that has not been reported in the milk or colostrum of any other mammal: Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. Acidic oligosaccharides that are also found in the milk of Asian elephant were Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc, while Neu5Gc(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc have not been found in Asian elephant milk. The oligosaccharides characterised contained both alpha(2-3)- and alpha(2-6)-linked Neu5Ac residues. They also contain only the type II chain, as found in most non-human, eutherian mammals.  相似文献   

13.
A UDP-GlcNAc:R1-beta 1-3Gal(NAc)-R2 [GlcNAc to Gal(NAc)] beta 6-N-acetylglucosaminyltransferase activity from pig gastric mucosa microsomes catalyzes the formation of GlcNAc beta 1-3(GlcNAc beta 1-6)Gal-R from GlcNAc beta 1-3Gal-R where -R is -beta 1-3GalNAc-alpha-benzyl or -beta 1-3(GlcNAc beta 1-6)GalNAc-alpha-benzyl. This enzyme is therefore involved in the synthesis of the I antigenic determinant in mucin-type oligosaccharides. The enzyme also converts Gal beta 1-3Gal beta 1-4Glc to Gal beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc. The enzyme was stimulated by Triton X-100 at concentrations between 0 and 0.2% and was inhibited by Triton X-100 at 0.5%. There is no requirement for Mn2+ and the enzyme activity is reduced to 65% in the presence of 10 mM EDTA. Enzyme products were purified and identified by proton NMR, methylation analysis and beta-galactosidase digestion. Competition studies suggest that this pig gastric mucosal beta 6-GlcNAc-transferase activity is due to the same enzyme that converts Gal beta 1-3GalNAc-R to mucin core 2, Gal beta 1-3(GlcNAc beta 1-6)GalNAc-R, and GlcNAc beta 1-3GalNAc-R to mucin core 4, GlcNAc beta 1-3(GlcNAc beta 1-6)GalNAc-R. Substrate specificity studies indicate that the enzyme attaches GlcNAc to either Gal or GalNAc in beta (1-6) linkage, provided these residues are substituted in beta (1-3) linkage by either GlcNAc or Gal. The insertion of a GlcNAc beta 1-3 residue into Gal beta 1-3GalNAc-R to form GlcNAc beta 1-3Gal beta 1-3GalNAc-R prevents insertion of GlcNAc into GalNAc. These studies establish several novel pathways in mucin-type oligosaccharide biosynthesis.  相似文献   

14.
Two trisaccharides, two tetrasaccharides, one penta-, one hexa-, two hepta-, one deca- and two undeca-saccharides were isolated from several Japanese black bear milk samples by chloroform/methanol extraction, gel filtration and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: Gal(alpha 1-3)Gal(beta 1-4)Glc (alpha 3'-galactosyllactose), Fuc(alpha 1-2)Gal(beta 1-4)Glc (2'-fucosyllactose), Gal(alpha 1-3)(Fuc(alpha 1-2))Gal(beta 1-4)Glc (B-tetrasaccharide), Gal(alpha 1-3)Gal(beta 1-4)(Fuc(alpha 1-3))Glc, Gal(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)[Fuc(alpha 1-3)]Glc (B-pentasaccharide), Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4)Glc (monofucosylhexasaccharide), Gal(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4)Glc (difucosylheptasaccharide), Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]Glc (difucosylheptasaccharide), Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)[Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-6)]Gal(beta 1-4)Glc (difucosyldecasaccharide), Gal(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)[Gal(alpha 1-3) Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-6)]Gal(beta 1-4)Glc (trifucosylundecasaccharide), Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)[Gal(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-6)]Gal(beta 1-4)Glc (trifucosylundecasaccharide). Lactose was present only in trace amounts. B-pentasaccharide was a dominant saccharide in early lactation milk, while alpha 3'-galactosyllactose was dominant in milk, later. The milk oligosaccharides of the Japanese black bear were compared with those of the Ezo brown bear.  相似文献   

15.
The assignment of the 13C- and 1H-NMR spectra of eight oligosaccharides of the lacto-N-tetraose and neotetraose series was obtained from homonuclear and heteronuclear correlation spectroscopy. These analyses were performed on the following compounds: 1. Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc; 2. NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc; 3. Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 4. NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 5. NeuAc alpha 2-3Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal beta 1-4Glc; 6. Fuc alpha 1-2Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 7. Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc; 8. NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc.  相似文献   

16.
The binding properties of a strain of Propionibacterium granulosum derived from human skin was investigated with reference to glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells using externally (125I) and metabolically [( 35S]methionine) labeled bacteria. Binding was found to lactosylceramide (LacCer; Gal beta 1-4Glc beta 1-Cer) but not to glycolipids lacking the lactose sequence (i.e. Glc beta 1-Cer, Gal beta 1-Cer or Gal alpha 1-4Gal beta 1-Cer). In microtiter wells, binding occurred at 50 ng and became half-maximal at the theoretical value for a monomolecular layer of LacCer (i.e. 100-200 ng/well). The bacteria also bound to glycolipids with various substitutions (e.g. GalNAc beta 1-4, Gal beta 1-3GalNAc beta 1-4, Fuc alpha 1-2Gal beta 1-3GalNAc beta 1-4, Gal alpha 1-3, GlcNAc beta 1-3, Gal beta 1-3GlcNAc beta 1-3, Gal beta 1-4GlcNAc beta 1-3, and Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3) at the Gal of LacCer, although only those species with GalNAc beta 1-4 or Gal beta 1-3GalNAc beta 1-4 were as active as LacCer itself. Glycolipids with other additions (e.g. Gal alpha 1-4 and NeuAc alpha 2-3) were negative. For unsubstituted LacCer, the binding required either a trihydroxy base or 2-hydroxy fatty acid, specifying the epithelial type of ceramide; LacCer composed of a dihydroxy base and nonhydroxy fatty acid was negative. This is interpreted as indicating that the proper presentation of the binding epitope depends on the ceramide structure. The relevance of this to biological membranes has not yet been established. Neither free lactose (up to 20 mg/ml) nor lactose-bovine serum albumin (5 mg/ml) prevented the binding of bacteria to LacCer, two facts that support the solid-phase binding data demonstrating a low affinity binding and the crucial importance of a particular lactose epitope.  相似文献   

17.
Samples of milk from a Bryde's whale and a Sei whale contained 2.7 g/100 mL and 1.7 g/100 mL of hexose, respectively. Both contained lactose as the dominant saccharide along with small amounts of Neu5Ac(alpha2-3)Gal(beta1-4)Glc (3'-N-acetylneuraminyllactose), Neu5Ac(alpha2-6)Gal(beta1-4)Glc (6'-N-acetylneuraminyllactose) and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LST c). The dominance of lactose in the carbohydrate of these milks is similar to that of Minke whale milk and bottlenose dolphin colostrum, but the oligosaccharide patterns are different from those of these two species, illustrating the heterogeneity of milk oligosaccharides among the Cetacea.  相似文献   

18.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(alpha1-3)Gal(beta1-4)Glc (alpha3'-galactosyllactose), Fuc(alpha1-2)Gal(beta1-4)Glc (2'-fucosyllactose), Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (B-tetrasaccharide), GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (A-tetrasaccharide), Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)[Gal(alpha1-3)Gal(beta1-4)Glc NAc(beta1-6)]Gal(beta1-4)Glc; the saccharides from another animal: alpha3'-galactosyllactose, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, A-tetrasaccharide, GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)[Fuc(alpha1-3)]Glc (A-pentasaccharide), Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[F uc(alpha1-3)]Glc (difucosylheptasaccharide) and Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)?Gal(alpha1-3) Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)?Gal(beta1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had alpha-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

19.
The structure of a nonasaccharide and of two decasaccharides isolated from human milk has been investigated by using methylation, fast atom bombardment mass spectrometry and 1H-/13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides were: trifucosyllacto-N-hexaose; Fuc alpha 1-2Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3[Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6]Gal beta 1-4Glc, difucosyllacto-N-octaoses; Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6[Gal beta 1-3GlcNAc beta 1-3]Gal beta 1-4Glc and Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6[Fuc alpha 1-3 Gal beta 1-3GlcNAc beta 1-3]Gal beta 1-4Glc. The two decasaccharides possess a new type of core structure proposed to be named iso-lacto-N-octaose.  相似文献   

20.
Carbohydrates were extracted from a sample of coati milk and the component oligosaccharides were separated and partially purified by gel filtration and preparative thin layer chromatography. Their structures were determined by 1H-NMR. Fuc alpha 1-->2Gal beta 1-->4Glc Gal alpha 1-->3Gal beta 1-->4Glc Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc Fuc alpha 1-->2Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc The two pentasaccharides are novel sugars. In addition, higher oligosaccharides, whose core units were lacto-N-neohexaose, were found in coati milk. Free lactose constituted only about one-third of the total free milk saccharides. The results are discussed in terms of comparisons with the milk sugars of bears and other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号