首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hira T  Nakajima S  Eto Y  Hara H 《The FEBS journal》2008,275(18):4620-4626
Intraluminal L-phenylalanine (Phe) stimulates cholecystokinin (CCK) secretion in vivo and in vitro. However, the cellular mechanism by which CCK-producing enteroendocrine cells sense Phe is unknown. The calcium-sensing receptor (CaR) can sense amino acids, and is expressed in the gastrointestinal tract. In the present study, we examined whether CaR functions as a receptor for Phe in CCK-producing enteroendocrine cells. CCK secretion and intracellular Ca2+ concentration in response to Phe were measured in the murine CCK-producing enteroendocrine cell line STC-1 at various extracellular Ca2+ concentrations or after treatment with a CaR antagonist. At more than 20 mm, Phe induced dose-dependent CCK secretion and intracellular Ca2+ mobilization in STC-1 cells. In the presence of 3.0 mm extracellular Ca2+, 10 and 20 mm Phe induced significantly higher CCK secretion than under normal conditions (1.2 mm extracellular Ca2+). Intracellular Ca2+ mobilization, induced by 10 or 20 mm Phe, was also enhanced by increasing extracellular Ca2+ concentrations. In addition, intracellular Ca2+ mobilization induced by addition of extracellular Ca2+ was augmented by the presence of Phe. These results closely match the known CaR properties. Treatment with a specific CaR antagonist (NPS2143) completely inhibited Phe-induced CCK secretion and the latter phase of intracellular Ca2+ mobilization. CaR mRNA expression was demonstrated by RT-PCR in STC-1 cells, as well as in other mouse tissues including the kidney, thyroid, stomach and intestine. In conclusion, CaR functions as a receptor for Phe, stimulating CCK secretion in enteroendocrine STC-1 cells.  相似文献   

2.
Fatty acids (FA) with at least 12 carbon atoms increase intracellular Ca(2+) ([Ca(2+)](i)) to stimulate cholecystokinin release from enteroendocrine cells. Using the murine enteroendocrine cell line STC-1, we investigated whether candidate intracellular pathways transduce the FA signal, or whether FA themselves act within the cell to release Ca(2+) directly from the intracellular store. STC-1 cells loaded with fura-2 were briefly (3 min) exposed to saturated FA above and below the threshold length (C(8), C(10), and C(12)). C(12), but not C(8) or C(10), induced a dose-dependent increase in [Ca(2+)](i), in the presence or absence of extracellular Ca(2+). Various signaling inhibitors, including d-myo-inositol 1,4,5-triphosphate receptor antagonists, all failed to block FA-induced Ca(2+) responses. To identify direct effects of cytosolic FA on the intracellular Ca(2+) store, [Ca(2+)](i) was measured in STC-1 cells loaded with the lower affinity Ca(2+) dye magfura-2, permeabilized by streptolysin O. In permeabilized cells, again C(12) but not C(8) or C(10), induced release of stored Ca(2+). Although C(12) released Ca(2+) in other permeabilized cell lines, only intact STC-1 cells responded to C(12) in the presence of extracellular Ca(2+). In addition, 30 min exposure to C(12) induced a sustained elevation of [Ca(2+)](i) in the presence of extracellular Ca(2+), but only a transient response in the absence of extracellular Ca(2+). These results suggest that at least two FA sensing mechanisms operate in enteroendocrine cells: intracellularly, FA (>/=C(12)) transiently induce Ca(2+) release from intracellular Ca(2+) stores. However, they also induce sustained Ca(2+) entry from the extracellular medium to maintain an elevated [Ca(2+)](i).  相似文献   

3.
Bile acids play essential roles in the absorption of dietary lipids and in the regulation of bile acid biosynthesis. Recently, a G protein-coupled receptor, TGR5, was identified as a cell-surface bile acid receptor. In this study, we show that bile acids promote glucagon-like peptide-1 (GLP-1) secretion through TGR5 in a murine enteroendocrine cell line STC-1. In STC-1 cells, bile acids promoted GLP-1 secretion in a dose-dependent manner. As STC-1 cells express TGR5 mRNA, we examined whether bile acids induce GLP-1 secretion through TGR5. RNA interference experiments showed that reduced expression of TGR5 resulted in reduced secretion of GLP-1. Furthermore, transient transfection of STC-1 cells with an expression plasmid containing TGR5 significantly enhanced GLP-1 secretion, indicating that bile acids promote GLP-1 secretion through TGR5 in STC-1 cells. Bile acids induced rapid and dose-dependent elevation of intracellular cAMP levels in STC-1 cells. An adenylate cyclase inhibitor, MDL12330A, significantly suppressed bile acid-promoted GLP-1 secretion, suggesting that bile acids induce GLP-1 secretion via intracellular cAMP production in STC-1 cells.  相似文献   

4.
5.
Dietary protein but not amino acids stimulates cholecystokinin (CCK) secretion in rat mucosal cells. However, the dietary protein sensory mechanisms and the intracellular signal pathway in the enteroendocrine cells have not yet been clarified. The relationship between dietary protein binding to cell membrane and intracellular calcium responses were examined in the CCK-producing enteroendocrine cell line STC-1. The binding of solubilized STC-1 cell membrane to proteins was analyzed using a surface plasmon resonance sensor. Intracellular calcium concentrations of STC-1 cell suspensions loaded with Fura-2 AM were measured using a spectrafluorophotometer system with continuous stirring. Intracellular calcium concentrations in STC-1 cells were increased by exposure to alpha-casein or casein sodium, but not to bovine serum albumin. Solubilized STC-1 membranes bound to alpha-casein and casein sodium but did not bind to bovine serum albumin. alpha-Casein demonstrated higher membrane binding and intracellular calcium stimulating activities than casein sodium. Thus, protein binding to the STC-1 cell membrane and intracellular calcium responses were correlated. Intracellular calcium responses to alpha-casein were suppressed by an L-type calcium channel blocker. These results suggest that casein, a dietary protein, binds to a putative receptor on the CCK-producing enteroendocrine cell membrane and elicits the subsequent intracellular calcium response via an L-type calcium channel.  相似文献   

6.
7.
Orexins are newly discovered neuropeptides regulating feeding and vigilance and have been detected in neuroendocrine cells of the gut. Potential neuroendocrine functions of orexin are unknown. Therefore, the effects of orexin-A on the intestinal neuroendocrine cell line, STC-1, were investigated as a model system. RT-PCR demonstrated the presence of both OX(1) and OX(2) receptors. Stimulation with orexin-A produced a dose-dependent release of cholecystokinin (CCK), which was abolished by removal of extracellular Ca(2+) or the presence of the voltage-gated L-type Ca(2+)-channel blocker diltiazem (10 microM). Orexin-A (Ox-A) elevated intracellular Ca(2+), which was dependent on extracellular Ca(2+). Furthermore, orexin-A caused a membrane depolarization in the STC-1 cells. Ox-A neither elevated cAMP levels nor stimulated phosphoinositide turnover in these cells. These data demonstrate a functional orexin receptor in the STC-1 cell line. Ox-A produces CCK release in these cells, by a mechanism involving membrane depolarization and subsequently activation of L-type voltage-gated Ca(2+)-channels.  相似文献   

8.
Transgenic mice carrying the human insulin gene driven by the K-cell glucose-dependent insulinotropic peptide (GIP) promoter secrete insulin and display normal glucose tolerance tests after their pancreatic p-cells have been destroyed. Establishing the existence of other types of cells that can process and secrete transgenic insulin would help the development of new gene therapy strategies to treat patients with diabetes mellitus. It is noted that in addition to GIP secreting K-cells, the glucagon-like peptide 1 (GLP-1) generating L-cells share/ many similarities to pancreatic p-cells, including the peptidases required for proinsulin processing, hormone storage and a glucose-stimulated hormone secretion mechanism. In the present study, we demonstrate that not only K-cells, but also L-cells engineered with the human preproinsulin gene are able to synthesize, store and, upon glucose stimulation, release mature insulin. When the mouse enteroendocrine STC-1 cell line was transfected with the human preproinsulin gene, driven either by the K-cell specific GIP promoter or by the constitutive cytomegalovirus (CMV) promoter, human insulin co-localizes in vesicles that contain GIP (GIP or CMV promoter) or GLP-1 (CMV promoter). Exposure to glucose of engineered STC-1 cells led to a marked insulin secretion, which was 7-fold greater when the insulin gene was driven by the CMV promoter (expressed both in K-cells and L-cells) than when it was driven by the GIP promoter (expressed only in K-cells). Thus, besides pancreatic p-cells, both gastrointestinal enteroendocrine K-cells and L-cells can be selected as the target cell in a gene therapy strategy to treat patients with type 1 diabetes mellitus.  相似文献   

9.
Fatty acid-induced stimulation of enteroendocrine cells leads to release of the hormones such as cholecystokinin (CCK) that contribute to satiety. Recently, the fatty acid activated G protein-coupled receptor GPR120 has been shown to mediate long-chain unsaturated free fatty acid-induced CCK release from the enteroendocrine cell line, STC-1, yet the downstream signaling pathway remains unclear. Here we show that linoleic acid (LA) elicits membrane depolarization and an intracellular calcium rise in STC-1 cells and that these responses are significantly reduced when activity of G proteins or phospholipase C is blocked. LA leads to activation of monovalent cation-specific transient receptor potential channel type M5 (TRPM5) in STC-1 cells. LA-induced TRPM5 currents are significantly reduced when expression of TRPM5 or GPR120 is reduced using RNA interference. Furthermore, the LA-induced rise in intracellular calcium and CCK secretion is greatly diminished when expression of TRPM5 channels is reduced using RNA interference, consistent with a role of TRPM5 in LA-induced CCK secretion in STC-1 cells.  相似文献   

10.
Long-chain fatty acids are potent stimulants of secretin and CCK release. The cellular mechanisms of fatty acid-stimulated secretion of these two hormones are not clear. We studied the stimulatory effect and mechanism of sodium oleate (SO) on secretin- and CCK-producing cells. SO stimulated the release of secretin or CCK from isolated rat mucosal cell preparations enriched in either secretin- or CCK-producing cells, respectively. SO also time- and dose-dependently stimulated secretin and CCK release from STC-1 cells. In STC-1 cells, SO-stimulated secretin and CCK release was potentiated by IBMX and inhibited by a protein kinase A-selective inhibitor and a cAMP-specific antagonist. SO-stimulated releases of the two hormones were also inhibited by downregulation or inhibitors of protein kinase C, a calmodulin antagonist and an inhibitor of calmodulin-dependent protein kinase II. Chelating of extracellular Ca(2+) or addition of an L-type calcium channel blocker diminished SO-stimulated hormone releases. SO caused an increase in intracellular Ca(2+) concentration that was partially reversed by diltiazem but had no effect on production of cAMP, cGMP, or inositol-1,4,5-triphosphate. These results indicate that SO acts on secretin- and CCK-producing cells. Its stimulatory effect is potentiated by endogenous protein kinase A and mediated by activation of Ca(2+) influx through the L-type channels and of protein kinase C and Ca(2+)/calmodulin-dependent protein kinase II.  相似文献   

11.
We previously demonstrated that intraduodenal administration of an arginine-rich β51–63 peptide in soybean β-conglycinin suppresses food intake via cholecystokinin (CCK) secretion in rats. However, the cellular mechanisms by which the β51–63 peptide induces CCK secretion remain to be clarified. In the present study, we examined whether the extracellular calcium-sensing receptor (CaR) mediates β51–63-induced CCK secretion in murine CCK-producing enteroendocrine cell line STC-1. CCK secretion and changes in intracellular Ca2+ concentration in response to β51–63 peptide were measured in STC-1 cells under various extracellular Ca2+ concentrations and after treatment with a CaR antagonist. Intracellular Ca2+ concentrations in response to β51–63 peptide and extracellular Ca2+ were also measured in CaR-expressing human embryonic kidney (HEK-293) cells. The β51-63 peptide induced CCK secretion and intracellular Ca2+ mobilization in STC-1 cells under normal (1.2 mM) extracellular Ca2+ conditions in a dose-dependent manner. These responses to β51–63 peptide were reduced by the removal of intra- or extracellular Ca2+ but enhanced by increasing extracellular Ca2+ concentrations. Intracellular Ca2+ mobilization induced by extracellular Ca2+ was also increased by the pretreatment with β51–63 peptide. Treatment with a specific CaR antagonist (NPS2143) inhibited β51–63-induced CCK secretion and intracellular Ca2+ mobilization. In addition, HEK-293 cells transfected with CaR acquired sensitivity to the β51–63 peptide. From these results, we conclude that CaR is the β51–63 peptide sensor responsible for the stimulation of CCK secretion in enteroendocrine STC-1 cells.  相似文献   

12.
We have previously shown that store-associated microdomains of high Ca(2+) are not essential for exocytosis in RBL-2H3 mucosal mast cells. We have now examined whether Ca(2+) microdomains near the plasma membrane are required, by comparing the secretory responses seen when Ca(2+) influx was elicited by two very different mechanisms. In the first, antigen was used to activate the Ca(2+) release-activated Ca(2+) (CRAC) current (I(CRAC)) through CRAC channels. In the second, a Ca(2+) ionophore was used to transport Ca(2+) randomly across the plasma membrane. Since store depletion by Ca(2+) ionophore will also activate I(CRAC), different means of inhibiting I(CRAC) before ionophore addition were used. Ca(2+) responses and secretion in individual cells were compared using simultaneous indo-1 microfluorometry and constant potential amperometry. Secretion still takes place when the increase in intracellular Ca(2+) occurs diffusely via the Ca(2+) ionophore, and at an average intracellular Ca(2)+ concentration that is no greater than that observed when Ca(2+) entry via CRAC channels triggers secretion. Our results suggest that microdomains of high Ca(2+) near the plasma membrane, or associated with mitochondria or Ca(2+) stores, are not required for secretion. Therefore, we conclude that modest global increases in intracellular Ca(2+) are sufficient for exocytosis in these nonexcitable cells.  相似文献   

13.
Apelin is an enteric peptide that exerts several digestive functions such as stimulation of cell proliferation and cholecystokinin (CCK) secretion. We investigated using murine enteroendocrine cell line (STC-1) and rats if apelin-13 stimulates both CCK and glucagon-like peptide 1 (GLP-1) secretions. We demonstrated that, in vitro and in vivo, apelin-13 increases the release of these two hormones in a dose-dependent manner. Present data suggest that apelin may modulate digestive functions, food intake behavior and glucose homoeostasis via apelin-induced release of enteric CCK but also through a new incretin-releasing activity on enteric GLP-1.  相似文献   

14.
Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-kappaB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-beta. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses.  相似文献   

15.
Parathyroid hormone (PTH) secretion is acutely regulated by the extracellular Ca(2+)-sensing receptor (CaR). Thus, Ca(2+) ions, and to a lesser extent Mg(2+) ions, have been viewed as the principal physiological regulators of PTH secretion. Herein we show that in physiological concentrations, l-amino acids acutely and reversibly activated the extracellular Ca(2+)-sensing receptor in normal human parathyroid cells and inhibited parathyroid hormone secretion. Individual l-amino acids, especially of the aromatic and aliphatic classes, as well as plasma-like amino acid mixtures, stereoselectively mobilized Ca(2+) ions in normal human parathyroid cells in the presence but not the absence of the CaR agonists, extracellular Ca(2+) (Ca(2+)(o)), or spermine. The order of potency was l-Trp = l-Phe > l-His > l-Ala > l-Glu > l-Arg = l-Leu. CaR-active amino acids also acutely and reversibly suppressed PTH secretion at physiological ionized Ca(2+) concentrations. At a Ca(2+)(o) of 1.1 mm and an amino acid concentration of 1 mm, CaR-active amino acids (l-Phe = l-Trp > l-His = l-Ala), but not CaR-inactive amino acids (l-Leu and l-Arg), stereoselectively suppressed PTH secretion by up to 40%, similar to the effect of raising Ca(2+)(o) to 1.2 mm. A physiologically relevant increase in the -fold concentration of the plasma-like amino acid mixture (from 1x to 2x) also reversibly suppressed PTH secretion in the Ca(2+)(o) concentration range 1.05-1.25 mm. In conclusion, l-amino acids acutely and reversibly activate endogenous CaRs and suppress PTH secretion at physiological concentrations. The results indicate that l-amino acids are physiological regulators of PTH secretion and thus whole body calcium metabolism.  相似文献   

16.
A gene therapy-based treatment of type 1 diabetes mellitus requires the development of a surrogate β cell that can synthesize and secrete functionally active insulin in response to physiologically relevant changes in ambient glucose levels. In this study, the murine enteroendocrine cell line STC-1 was genetically modified by stable transfection. Two clone cells were selected (STC-1-2 and STC-1-14) that secreted the highest levels of insulin among the 22 clones expressing insulin from 0 to 157.2 μIU/ml/106 cells/d. After glucose concentration in the culture medium was increased from 1 mM to 10 mM, secreted insulin rose from 40.3±0.8 to 56.3±3.2 μIU/ml (STC-1-2), and from 10.8±0.8 to 23.6±2.3 μIU/ml (STC-1-14). After STC-1-14 cells were implanted into diabetic nude mice, their blood glucose levels were reduced to normal. Body weight loss was also ameliorated. Our data suggested that genetically engineered K cells secrete active insulin in a glucose-regulated manner, and in vivo study showed that hyperglycemia could be reversed by implantation of the cells, suggesting that the use of genetically engineered K cells to express human insulin might provide a glucose-regulated approach to treat diabetic hyperglycemia.  相似文献   

17.
A characteristic astringent taste is elicited by polyphenols. Among the polyphenols, catechins and their polymers are the most abundant polyphenols in wine and tea. A typical green tea polyphenol is epigallocatechin gallate (EGCG). Currently, the mechanism underlying the sensation of astringent taste is not well understood. We observed by calcium imaging that the mouse intestinal endocrine cell line STC-1 responds to the astringent compound, EGCG. Among major catechins of green tea, EGCG was most effective at eliciting a response in this cell line. This cellular response was not observed in HEK293T or 3T3 cells. Further analyses demonstrated that the 67-kDa laminin receptor, a known EGCG receptor, is not directly involved. The Ca(2+) response to EGCG in STC-1 cells was decreased by inhibitors of the transient receptor potential A1 (TRPA1) channel. HEK293T cells transfected with the mouse TRPA1 (mTRPA1) cDNA showed a Ca(2+) response upon application of EGCG, and their response properties were similar to those observed in STC-1 cells. These results indicate that an astringent compound, EGCG, activates the mTRPA1 in intestinal STC-1 cells. TRPA1 might play an important role in the astringency taste on the tongue.  相似文献   

18.
The sensing of extracellular Ca(2+) concentration ([Ca(2+)](o)) and modulation of cellular processes associated with acute or sustained changes in [Ca(2+)](o) are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca(2+)](o) signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca(2+)](o) activated PKC-alpha and PKC- in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca(2+)](o) required influx of Ca(2+)through Ni(2+)-sensitive Ca(2+)channels and phosphatidylinositol-dependent phospholipase C-beta activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-alpha or - with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca(2+)](o). Activation of ERK1/2 by high [Ca(2+)](o) was not necessary for the [Ca(2+)](o)-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca(2+)](o) signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.  相似文献   

19.
Polycystin-1 (PC1) is a membrane protein expressed in tubular epithelia of developing kidneys and in other ductal structures. Recent studies indicate this protein to be putatively important in regulating intracellular Ca(2+) levels in various cell types, but little evidence exists for kidney epithelial cells. Here we examined the role of the PC1 cytoplasmic tail on the activity of store operated Ca(2+) channels in human kidney epithelial HEK-293 cell line. Cells were transiently transfected with chimeric proteins containing 1-226 or 26-226 aa of the PC1 cytoplasmic tail fused to the transmembrane domain of the human Trk-A receptor: TrkPC1 wild-type and control Trk truncated peptides were expressed at comparable levels and localized at the plasma membrane. Ca(2+) measurements were performed in cells co-transfected with PC1 chimeras and the cytoplasmic Ca(2+)-sensitive photoprotein aequorin, upon activation of the phosphoinositide pathway by ATP, that, via purinoceptors, is coupled to the release of Ca(2+) from intracellular stores. The expression of TrkPC1 peptide, but not of its truncated form, enhanced the ATP-evoked cytosolic Ca(2+) concentrations. When Ca(2+) assays were performed in HeLa cells characterized by Ca(2+) stores greater than those of HEK-293 cells, the histamine-evoked cytosolic Ca(2+) increase was enhanced by TrkPC1 expression, even in absence of external Ca(2+). These observations indicate that the C-terminal tail of PC1 in kidney and other epithelial cells upregulates a Ca(2+) channel activity also involved in the release of intracellular stores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号