首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Abstract: In an effort to explain the previously observed methyl mecury (MeHg)-induced stimulation of protein phosphorylation in cerebellar granule neuron cultures, the effect of MeHg on protein kinase activities in cell-free assays and on second messenger systems in cultured neurons has been examined. Using cell-free assays for several protein kinases, no stimulation of enzyme activity was found at any concentration of MeHg tested. After 24 h exposure, 1–5 μ M MeHg was found to have no significant effect on neuronal cyclic AMP levels. In contrast, intracellular levels of Ca2+ and rates of 45Ca2+ uptake were elevated 2.2-fold and 3.6-fold, respectively, by 5 μ M MeHg. These effects were not observed with mercuric chloride, triethyllead, or lead acetate. Measurement of inositol phosphate production in granule cell cultures revealed a sensitive, pretoxic effect of MeHg with twofold stimulation following 30-min exposure to 5 μ M MeHg and 1.6-fold after 24-h exposure to 3 μ M MeHg. Detection of inositol phosphate production after 30 min of MeHg was largely neuron-specific. These results suggest that second messenger-mediated activation of select protein kinase enzymes may be the mechanism underlying MeHg-induced stimulation of protein phosphorylation in cerebellar neuronal culture. In addition, these findings indicate a specific interference with neuronal signal transduction and suggest a basis for the selective neurotoxic action of this agent.  相似文献   

2.
In the preceding report we demonstrated a dose-dependent increase in 32P-phosphoprotein labeling after 24-h exposure of cultured cerebellar granule neurons to methyl mercury (MeHg), a response that was not observed in glial cultures. In the present study we have examined 32P-labeled phosphoproteins by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. At concentrations of 0.5 and 1 microM, which were not extensively cytotoxic, MeHg enhanced phosphorylation of numerous acidic proteins, particularly a cluster of proteins with Mr approximately 28,000 and pI approximately 5.7-5.9 (pp 28/5.7-5.9) and a protein with Mr approximately 58,000 and pI approximately 5.6. The pp28 cluster displayed considerable two-dimensional pattern variability from one experiment to the next, suggesting susceptibility to subtle structural modifications. Time course studies revealed that increased 32P phospholabeling of pp28/5.7-5.9 was detectable after 12-h exposure to 3 microM MeHg and reached values of 300-500% of control by 24 h. These studies also showed that among the 21 proteins analyzed by two-dimensional densitometry, 32P phospholabeling of four proteins increased by 20-50% and of two proteins decreased by 20-50% after 24-h treatment. However, exposure to 10 microM MeHg produced stimulation of pp28/5.7-5.9 32P phospholabeling within 2 h. Under these conditions a relatively high stimulation (sevenfold) of pp28/5.7 phospholabeling occurred, while pp28/5.9 32P phospholabeling was only moderately (5-20%) enhanced. 35S and 32P double-label analysis of cells treated with 0, 0.5, and 1 microM MeHg indicated specific stimulation of 32P phospholabeling of these proteins without increased polypeptide synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Plasma-membrane-bound kinases of AS-30D ascites from transplantable rat hepatocarcinoma were shown to extensively catalyze the phosphorylation of plasma membrane proteins and membrane lipids, using [gamma-32P]ATP or [gamma-32P]GTP as a phosphate donor. In contrast, plasma membranes from normal adult rat liver or fast-growing regenerating liver (24 h after partial hepatectomy) produce significantly less activity for protein phosphorylation and little phosphorylation of the lipids. However, neonatal (24 h old) rat liver plasma membrane preparations show levels of phosphorylation of proteins and lipids intermediate between those in the tumor cell line and normal adult plasma membrane preparations. Phosphatidic acid was identified as one of the 32P-labelled lipids in the tumor plasma membrane chloroform-methanol (2:1, v/v) extract. Phosphorylation of protein was not affected by cAMP or cGMP. However, calcium ion (in the presence or absence of calmodulin) significantly modifies the 32P labelling of a series of proteins in normal tissue but has little effect with the neoplastic preparations. Some plasma membrane proteins were capable of nucleotide binding, instead or in addition to being phosphorylated. Finally, the presence of membrane-bound phosphoprotein phosphatase(s) was also demonstrated in all the preparations examined by means of chase experiments with nonlabelled ATP or GTP, and (or) by the use of the phosphoprotein phosphatase inhibitor, orthovanadate.  相似文献   

4.
Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [gamma-32P]ATP but not [alpha-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density.  相似文献   

5.
To determine whether phosphorylation of cell surface proteins is involved in NK cell activity, the phosphorylation patterns of a rat NK cell line (RNK-16) incubated with 12.5 microM [gamma-32P]ATP were characterized before and after exposure to YAC-1 cells, which serve as targets for killing, and K562 cells, which are not killed by RNK-16 cells. By 51Cr release assays, the inhibitory effect of ATP on RNK-16 killing activity previously reported was corroborated. RNK-16 cells prelabeled with 12.5 microM ATP show enhanced labeling of a 70- to 72,000-Da protein after exposure to unlabeled target YAC-1 cells but not after exposure to K562 cells. A protein of similar apparent molecular size is also labeled upon exposure of RNK-16 cells to OX-34, an antibody which binds and inhibits killing, as well as upon exposure to OX-18, which also binds but does not inhibit NK activity. These findings are indicative of the activation of a kinase with high affinity for [gamma-32P]ATP, which phosphorylates an endogenous surface substrate of 70-72,000 Da upon binding of macromolecules to the RNK-16 cells. RNK-16 cells, previously labeled with micromolars [gamma-32P]ATP and subsequently treated with millimolars unlabeled ATP, showed loss of label from a 110,000-Da protein component, indicative of the rapid turnover of a phosphate group on a surface protein. Thus, extracellular ATP enhances the phosphorylation of a 70- to 72,000-Da component upon binding of RNK-16 cells to target cells or upon binding of antibodies at micromolar concentrations of ATP and catalyzes the loss of phosphate from a 110,000-Da component at millimolar concentrations of ATP. These findings reflect a complex repertoire of surface phosphorylation changes which occur in RNK-16 cells.  相似文献   

6.
Skeletal muscle rapidly develops severe insulin resistance following denervation, although insulin binding is unimpaired. Insulin-stimulated receptor tyrosyl kinase activity was studied in intact and 24-h denervated rat hind limb muscles using three preparations: (a) solubilized insulin receptors incubated +/- insulin with gamma-[32P]ATP and histone H2b; (b) soleus muscles prelabeled in vitro with [32P]phosphate with subsequent insulin-stimulated phosphorylation of the receptor in situ; (c) assessment of in vivo activation of muscle receptor tyrosyl kinase by insulin. The latter was achieved by solubilizing muscle insulin receptors in the presence of phosphoprotein phosphatase and kinase inhibitors and measuring receptor-catalyzed histone H2b phosphorylation in the presence of limiting (5 microM) gamma-[32P]ATP. Receptors isolated 5 and 30 min after intravenous insulin injection catalyzed 32P incorporation into histone H2b twice as fast as those from saline-treated controls; insulin stimulated histone H2b labeling exclusively on tyrosine. In vivo activation was demonstrated using solubilized and insulin-agarose-bound receptors. Autophosphorylation of the beta-subunit and receptor tyrosyl kinase activity toward histone H2b was stimulated by insulin in denervated muscles as in controls, although the biological response to insulin, in vitro and in vivo, was markedly impaired after denervation, suggesting a postreceptor defect. The method developed to assess insulin-stimulated receptor activation in vivo seems useful in characterizing mechanisms of insulin resistance.  相似文献   

7.
We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.  相似文献   

8.
Phosphorylation of soluble proteins in rat mammary acinar cells was investigated. When phosphorylation proceeded in intact cells, in the presence of [32P]Pi, the major non-casein phosphoproteins, including acetyl-CoA carboxylase, were unresponsive to incubation conditions that caused major increases in the intracellular concentration of cyclic AMP. The overall 32P specific radioactivity (c.p.m./microgram of protein) of acetyl-CoA carboxylase, assessed after affinity purification of the enzyme with avidin-Sepharose, was unchanged by incubation under such conditions. Furthermore, the distribution of 32P among tryptic phosphopeptides of the enzyme, resolved by reversed-phase h.p.l.c., was not altered by cyclic AMP-increasing treatments of the acinar cells. When cytosol fractions were incubated with [gamma-32P]ATP, some phosphoproteins responded to the addition of micromolar concentrations of dibutyryl cyclic AMP or cyclic AMP by undergoing an enhancement of phosphate incorporation. In these experiments in vitro, protein phosphatase activity did not make a major contribution to the net phosphorylation of individual phosphoproteins, and acetyl-CoA carboxylase was not prominent among the phosphoproteins identified after short (less than 1 min) incubations of cytosols with [gamma-32P]ATP. The resistance of protein phosphorylation to variations in the cyclic AMP concentration in intact mammary epithelial cells, demonstrated by this work, is one of several mechanisms that ensure the pleiotropic refractoriness of those cells to agents which normally cause a stimulation of adenylate cyclase activity in hormone-sensitive cells.  相似文献   

9.
Pluronic P85 (poly(oxyethylene)-poly(oxypropylene) block copolymer) was used for in vitro delivery of [gamma-32P]ATP into intact Jurkat cells. Negatively charged ATP molecules are not able to penetrate cell plasma membrane. Hence, exogenous [gamma-32P]ATP added to a cell culture does not participate in phosphorylation of intracellular proteins. The addition to cells of [gamma-32P]ATP solubilized in positively charged (containing dodecylamine) pluronic micelles results in considerable increase of protein phosphorylation. In this case the treatment of intact cells with alkaline phosphatase (resulting in dephosphorylation of external proteins) causes no essential decrease of [32P]-incorporation in cell proteins. That gives an evidence of delivery of solubilized ATP into a cell. Under the experimental conditions used, pluronic micelles neither influence the viability of cells nor permeabilize cell plasma membrane.  相似文献   

10.
Glucose metabolism is of vital importance in normal brain function. Evidence indicates that glycolysis, in addition to production of ATP, plays an important role in maintaining normal synaptic function. In an effort to understand the potential involvement of a glycolytic intermediate(s) in synaptic function, we have prepared [3-32P]1,3-bisphosphoglycerate and [32P]3-phosphoglycerate and sought their interaction with a specific nerve-ending protein. We have found that a 29-kDa protein is the major component labeled with either [3-32P]1,3-bisphosphoglycerate or [32P]3-phosphoglycerate. The protein was identified as monophosphoglycerate mutase (PGAM). This labeling was remarkably high in the brain and synaptosomal cytosol fraction, consistent with the importance of glycolysis in synaptic function. Of interest, fructose-2,6-bisphosphate (Fru-2,6-P2) inhibited PGAM phosphorylation and enzyme activity. Moreover, Fru-2,6-P2 potently stimulated release of [32P]phosphate from the 32P-labeled PGAM (EC50 = 1 microM), suggesting that apparent reduction of PGAM phosphorylation and enzyme activity by Fru-2,6-P2 may be due to stimulation of dephosphorylation of PGAM. The significance of these findings is discussed.  相似文献   

11.
The effects of amyloid beta protein on voltage-gated K(+) channel currents were studied using the whole-cell patch-clamp technique. The 1-40 amino acid form of amyloid beta protein was applied to primary cultures of rat cerebellar granule and cortical neurones for 24 h. Both the unaggregated and aggregated forms of the peptide, which have differing biological activities, were used. In cerebellar granule neurones, 24-h pre-incubation with 1 microM unaggregated amyloid beta protein resulted in a 60% increase in the 'A'-type component of K(+) current. Increased delayed rectifier activity was Cd(2+)-sensitive and was presumed to be secondary to an increase in voltage-gated Ca(2+) channel current activity. Unaggregated amyloid beta protein had no effect on any component of the K(+) channel current in cortical neurones. One micromolar of aggregated amyloid beta protein had no effect on K(+) channel current in either cell type but reduced cell survival within 24 h as measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assays. The unaggregated form of amyloid beta protein had no neurotoxic effects when applied to either neurone type for up to 72 h. These data indicate that the unaggregated, non-pathological form of amyloid beta protein causes changes in the ion channel function of neurones, possibly reflecting a physiological role for the peptide.  相似文献   

12.
We have determined the absolute phosphate content of microtubule-associated proteins (MAPs) and established that phosphorylation inhibits the actin filament cross-linking activity of MAPs and both of the major MAP components, MAP-2 and tau. Similar results were obtained with actin from rabbit muscle, hog brain, and Acanthamoeba castellanii. We used the endogenous phosphatases and kinases in hog brain microtubule protein to modulate MAP phosphate level before isolating heat-stable MAPs. MAPs isolated directly from twice-cycled microtubule protein contain 7.1 +/- 0.1 (S.E.) mol of phosphate/300,000 g protein. After incubating microtubule protein without ATP, MAPs, had 4.9 +/- 0.6 phosphates. After incubating microtubule protein with 1 mM ATP and 5 microM cAMP in 2 mM EGTA, MAPs had 8.6 +/- 0.5 phosphates but there was also exchange of three more [32P]phosphates from gamma-labeled ATP for preexisting MAP phosphate. Incubation of microtubule protein with ATP and cAMP in 5 mM CaCl2 resulted in exchange but no net addition of phosphate to MAPs. We fractionated the MAP preparations by gel filtration and obtained MAP-2 with 4.3 to 7.5 and tau with 1.5 to 2.2 mol of phosphate/mol of protein depending on how we treated the microtubule protein prior to MAP isolation. The actin filament cross-linking activity of whole MAPs, MAP-2, and tau depended on the MAP-phosphate content. In all cases, phosphorylation of MAPs inhibited actin filament cross-linking activity. The concentration of high phosphate MAPs required to form a high viscosity solution with actin filaments was 2 to 4 times more than that of low phosphate. MAPs. During incubation of microtubule protein with [gamma-32P]ATP, only MAP peptides are labeled. Treatment of these MAPs with either acid or alkaline phosphatase removes phosphate mainly from MAP-2, with an increase in actin filament cross-linking activity. Thus, both MAP phosphorylation and the effect of phosphorylation on actin cross-linking activity of MAPs are reversible.  相似文献   

13.
The neuronal tissue-specific protein kinase C (PKC) substrate B-50 can be dephosphorylated by endogenous protein phosphatases (PPs) in synaptic plasma membranes (SPMs). The present study characterizes membrane-associated B-50 phosphatase activity by using okadaic acid (OA) and purified 32P-labeled substrates. At a low concentration of [gamma-32P]ATP, PKC-mediated [32P]phosphate incorporation into B-50 in SPMs reached a maximal value at 30 s, followed by dephosphorylation. OA, added 30 s after the initiation of phosphorylation, partially prevented the dephosphorylation of B-50 at 2 nM, a dose that inhibits PP-2A. At the higher concentration of 1 microM, a dose of OA that inhibits PP-1 as well as PP-2A, a nearly complete blockade of B-50 dephosphorylation was seen. Heat-stable PP inhibitor-2 (I-2) also inhibited dephosphorylation of B-50. The effects of OA and I-2 on B-50 phosphatase activity were additive. Endogenous PP-1- and PP-2A-like activities in SPMs were also demonstrated by their capabilities of dephosphorylating [32P]phosphorylase a and [32P]casein. With these exogenous substrates, sensitivities of the membrane-bound phosphatases to OA and I-2 were found to be similar to those of purified forms of these enzymes. These results indicate that PP-1- and PP-2A-like enzymes are the major B-50 phosphatases in SPMs.  相似文献   

14.
We have investigated the role of protracted phosphatase inhibition and the consecutive protracted protein phosphorylation on neuronal viability. We found that in primary cultures of cerebellar granule neurons, the protracted (24-h) inhibition of the serine/threonine protein phosphatases 1 and 2A (EC 3.1.3.16) by treatment of the cultures with okadaic acid (OKA; 5-20 nM) caused neurotoxicity that could be inhibited by the protein kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) or by the previous down-regulation of the neuronal protein kinase C (PKC; ATP:protein phosphotransferase; EC 2.7.1.37). PKC was down-regulated by exposure of the cultures for 24 h to 100 nM phorbol 12-myristate 13-acetate (TPA). The effect of the drugs used in the viability studies on the pattern of protein phosphorylation was measured by quantitative autoradiography. In particular, the 50- and 80-kDa protein bands showed dramatic changes in the degree of phosphorylation: increase by OKA and brief TPA treatment; decrease by H7 or 24 h of TPA treatment; and inhibition of the OKA-induced increase by H7 or 24 h of TPA treatment. The results suggest that the protracted phosphorylation, in particular that mediated by PKC, may lead to neuronal death and are in line with our previous suggestion that prolonged PKC translocation is operative in glutamate neurotoxicity.  相似文献   

15.
Maturation was induced in Asterias oocytes with 1-methyladenine (1-MA) at a final concentration of 2 microM. At 5, 10, and 30 min of treatment, oocytes were homogenized and the cytosolic fraction was prepared. The cytosol was incubated with [gamma-32P]ATP and [gamma-32P]GTP. The phosphorylated proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the radioactivity in the gels was determined by autoradiography. The cytosol prepared from 1-MA-treated oocytes incubated with [gamma-32P]ATP showed a marked increase in the radiolabeling of proteins with estimated molecular weights of 70,000 and 62,000 Da. With [gamma-32P]GTP a 56,000-Da protein showed increased radiolabeling. The present finding suggests that an early biochemical event of 1-MA-induced oocyte maturation in Asterias is the stimulation of phosphorylation of specific proteins.  相似文献   

16.
The beta-amyloid (Abeta) peptide Abeta25-35 provokes apoptosis of cerebellar granule cells through activation of caspase-3 while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes granule cell survival by inhibiting caspase-3 activation through the intrinsic apoptotic pathway. The aim of the present study was to determine whether PACAP could prevent Abeta25-35 neurotoxicity by inhibiting caspase-3 activity. A 24-h exposure of cultured cerebellar granule cells to Abeta25-35 induced shrinkage of cell bodies, neurite retraction and alteration of mitochondrial activity. Administration of graded concentrations (10-80 microM) of Abeta25-35 induced a dose-related decrease of the number of living cells, and the neurotoxic effect was highly significant after a 24-h exposure to 80 microM Abeta25-35. Exposure of cerebellar granule cells to Abeta25-35 markedly enhanced caspase-3 but not caspase-9 activity. Co-incubation with 1 microM PACAP significantly reduced Abeta25-35-evoked caspase-3 activation. In contrast, PACAP did not prevent the deleterious effects of Abeta25-35 on mitochondrial potential and granule cell survival. Taken together, these data suggest that caspase-3 activation is not the main pathway activated by Abeta25-35 that leads to granule cell death. The results also demonstrate that PACAP cannot be considered as a potent neuroprotective factor against Abeta25-35-induced apoptosis in cerebellar granule neurons.  相似文献   

17.
1. Although Mn2+ could mimic kinase FA/ATP.Mg to activate ATP.Mg-dependent protein phosphatase, strong indications have been obtained that the Mn2(+)-activated and FA/ATP.Mg-activated phosphatase forms are not identical in terms of their substrate specificities and catalytic properties. 2. Both Mn2(+)-activated and FA/ATP.Mg-activated phosphatase forms readily dephosphorylate 32P-labeled phosphorylase a and myelin basic protein (MBP), however the Mn2(+)-activated phosphatase displays activity preferentially against [32P]MBP and FA/ATP.Mg-activated phosphatase preferentially dephosphorylates [32P]phosphorylase a, representing a unique control mechanism to regulate the substrate specificity of multisubstrate protein phosphatase in mammalian tissues.  相似文献   

18.
A simple and reproducible radioimmunoassay of the epidermal growth factor (EGF) receptor which uses 32P-labeled EGF receptor and anti-receptor monoclonal antibodies is reported. In vitro phosphorylation of A431 cell membranes with [gamma-32P]ATP in the presence of 20% dimethyl sulfoxide (which stimulates autophosphorylation of the EGF receptor) and 10 microM Na3VO4 (a potent inhibitor of phosphotyrosyl protein phosphatase) provides radiolabeled EGF receptor for radioimmunoassay without further purification. The most selective phosphorylation of the EGF receptor is achieved at ATP concentrations of 0.1-0.2 microM, which corresponds to the reported Km value for the autophosphorylation reaction of the EGF receptor (W. Weber, P.J. Bertics, and G.N. Gill, 1984, J. Biol. Chem. 259, 14631-14939). The incorporation of 32P into EGF receptors increases in proportion to the increase of ATP concentration up to 6 mol of labeled phosphate at 2.0 microM ATP. The label is entirely on tyrosine residues. The cell membranes can be stored at -70 degrees C for 3 months without loss of immunoreactivity and autophosphorylating activity. Standard curves for the radioimmunoassay were constructed employing either A431 cell membranes or whole cell homogenates containing a known amount of EGF receptor. The assay can detect 7 X 10(10) EGF receptor molecules or 20 ng of the receptor protein, and can quantitatively distinguish the difference in EGF receptor numbers between A431 cells and 29E2 and KB cells with 10-fold and 15-fold fewer receptors than A431 cells, respectively. 29E2 cells and KB cells express twofold more immunoreactive EGF receptors than EGF-binding sites. In contrast, A431 cells possess the same number of immunoreactive sites and receptor sites for EGF binding. To assess total EGF receptor expression, it is necessary to use a method which detects EGF receptors regardless of their intrinsic kinase activity, or capacity to bind EGF. This radioimmunoassay detects immunoreactive receptor molecules, even those which do not bind EGF.  相似文献   

19.
Phosphorylation of a chromaffin granule-binding protein by protein kinase C   总被引:5,自引:0,他引:5  
Protein kinase C was detected in a group of Ca2+-dependent chromaffin granule membrane-binding proteins (chromobindins) on the basis of Ca2+-, phosphatidylserine-, 1,2-diolein-, and phorbol myristate acetate-stimulated histone kinase activity. When the chromobindins were incubated with [gamma-32P]ATP, Ca2+, and phosphatidylserine, 32P was incorporated predominantly into a protein of mass 37 +/- 1 kilodaltons (chromobindin 9, or CB9). Phosphorylation of this protein was also stimulated by diolein and phorbol myristate acetate, indicating that it is a substrate for the protein kinase C activity present in the chromobindins. Maximum phosphate incorporation into CB9 in the presence of 1 mM Ca2+, 75 micrograms/ml of phosphatidylserine, 2.5 micrograms/ml of diolein, and 12.5 micrograms/ml of dithiothreitol was 0.53 mol/mol of CB9 in 5 min. Eight 32P-labeled phosphopeptides were resolved in two-dimensional electrophoretic maps of trypsin digests of CB9. Phosphoamino acid analysis revealed that phosphorylation was exclusively on serine (94%) and threonine (6%) residues. Incubation of the chromobindins with chromaffin granule membranes in the presence of [gamma-32P]ATP resulted in the incorporation of 32P into eight additional proteins besides CB9 that could be separated from the membranes by centrifugation in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. We suggest that phosphorylation of CB9 or these additional eight proteins may regulate events underlying exocytosis in the chromaffin cell.  相似文献   

20.
Abstract: We have investigated the mechanism of inhibition of RNA synthesis by methyl mercury (MeHg) in isolated neonatal rat cerebellar cells. Each of the three component steps involved in the incorporation of exogenous [3H]uridine into cellular RNA was examined separately in whole-cell and/or subcellular preparations. Nuclear RNA polymerase activity was measured in preparations containing both free nuclei and whole cells. Incorporation of [3H]UTP into nuclear RNA was found to be unimpaired at concentrations of MeHg that inhibited whole-cell incorporation of [3H]uridine by > 75%. Cellular uptake of [3H]uridine was assayed in cerebellar cells treated with KCN to deplete ATP levels and block subsequent phosphorylation reactions of transported uridine. Uptake activity under these conditions was unaffected by MeHg. Measurement of intracellular phosphorylation of [3H]uridine indicated that inhibition of this activity closely paralleled that of RNA synthesis. Quantitation of individual uridine nucleotides by polyethyleneimine-cellulose TLC revealed reduced levels of UTP and UDP whereas levels of UMP were elevated, suggesting that impairment of phosphorylation was not the result of cellular ATP depletion but, more likely, a direct effect on phosphouridine kinase enzymes. This mechanism of MeHg-induced inhibition of RNA synthesis was confirmed by assays of uridine phosphorylation using cell-free extracts in which exogenous ATP was supplied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号