首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abuja PM  Zenz A  Trabi M  Craik DJ  Lohner K 《FEBS letters》2004,566(1-3):301-306
The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, Tm, was unchanged, but additional phase transitions appeared above Tm. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small- and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTD-1 above Tm, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption.  相似文献   

2.
Three-dimensional structure of RK-1: a novel alpha-defensin peptide   总被引:3,自引:0,他引:3  
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of RK-1, an antimicrobial peptide from rabbit kidney recently discovered from homology screening based on the distinctive physicochemical properties of the corticostatins/defensins. RK-1 consists of 32 residues, including six cysteines arranged into three disulfide bonds. It exhibits antimicrobial activity against Escherichia coli and activates Ca(2+) channels in vitro. Through its physicochemical similarity, identical cysteine spacing, and linkage to the corticostatins/defensins, it was presumed to be a member of this family. However, RK-1 lacks both a large number of arginines in the primary sequence and a high overall positive charge, which are characteristic of this family of peptides. The three-dimensional solution structure, determined by NMR, consists of a triple-stranded antiparallel beta-sheet and a series of turns and is similar to the known structures of other alpha-defensins. This has enabled the definitive classification of RK-1 as a member of this family of antimicrobial peptides. Ultracentrifuge measurements confirmed that like rabbit neutrophil defensins, RK-1 is monomeric in solution, in contrast to human neutrophil defensins, which are dimeric.  相似文献   

3.
Defensins are antimicrobial peptides that are important in the innate immune defense of mammals. In contrast to mammalian α- and β-defensins, rhesus θ-defensin-1 (RTD-1) comprises only 18 amino acids stabilized by three disulfide bonds and an unusual backbone cyclic topology. In this work we report for the first time the recombinant expression of the fully folded θ-defensin RTD-1 using a bacterial expression system. This was accomplished using an intramolecular native chemical ligation in combination with a modified protein-splicing unit. RTD-1 was produced either in vitro or in vivo. In-cell production of RTD-1 was estimated to reach an intracellular concentration of ~4 μM. Recombinant RTD-1 was shown to be correctly folded as characterized by heteronuclear-NMR and by its ability to specifically inhibit lethal factor protease. The recombinant production of folded θ-defensins opens the possibility to produce peptide libraries based on this peptide scaffold that could be used to develop in-cell screening and directed evolution technologies.  相似文献   

4.
Rhesus theta-defensin 1 (RTD-1) is a unique tridisulfide, cyclic antimicrobial peptide formed by the ligation of two 9-residue sequences derived from heterodimeric splicing of similar 76-amino acid, alpha-defensin-related precursors, termed RTD1a and RTD1b (Tang, Y. Q., Yuan, J., Osapay, G., Osapay, K., Tran, D., Miller, C. J., Ouellette, A. J., and Selsted, M. E. (1999) Science 286, 498-502). The structures of RTD-2 and RTD-3 were predicted to exist if homodimeric splicing of the RTD1a and RTD1b occurs in vivo. Western blotting disclosed the presence of putative theta-defensins, distinct from RTD-1, in leukocyte extracts. Two new theta-defensins, RTD-2 and RTD-3, were purified by reverse-phase high performance liquid chromatography and characterized by amino acid analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, and comparison to the synthetic standards. RTD-2 and RTD-3 are the predicted homodimeric splicing products of RTD1b and RTD1a, respectively. The cellular abundances of RTD-1, -2, and -3 were 29:1:2, indicating that there is a preference for the heterodimeric ligation that generates RTD-1. RTD-1, -2, and -3 had similar antimicrobial activities against Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans, whereas the activity of RTD-2 against Escherichia coli was 2-3-fold less than those of RTD-1 and RTD-3. Equal amounts of each theta-defensin bound to E. coli cells, indicating that the differences in antibacterial activities are the result of post-binding processes.  相似文献   

5.
The solution structure of two homologous naturally occurring antimicrobial peptides, rabbit defensin NP-2 and human defensin HNP-1, have been determined by two-dimensional nuclear magnetic resonance spectroscopy, distance geometry, and restrained molecular dynamics calculations. The structure of these defensins consists of an antiparallel beta-sheet in a hairpin conformation, a short region of triple-stranded beta-sheet, several tight turns, and a loop region that has a well-defined local structure but with a global orientation that is not well-defined with respect to the rest of the molecule. The solution structures of these two peptides are compared with the solution and crystal structures of two other homologous defensins. The structures for the defensins are also compared with known structures of other naturally occurring antimicrobial peptides.  相似文献   

6.
X L Zhang  M E Selsted  A Pardi 《Biochemistry》1992,31(46):11348-11356
Two-dimensional nuclear magnetic resonance spectroscopy has been used to make resonance assignments of the proton spectra of two defensin antimicrobial peptides, human neutrophil peptide HNP-1 and rabbit neutrophil peptide NP-2. The secondary structures of these peptides were determined from analysis of the proton-proton NOEs and from the positions of slowly exchanging amide protons. Both peptides contain a long stretch of a double-stranded antiparallel beta-sheet in a hairpin conformation that contains a beta-bulge, a short region of triple-stranded beta-sheet, and several tight turns. The NMR results clearly show that HNP-1 forms a dimer or higher order aggregate in solution and that Pro8 exists as a cis peptide bond. The NMR data on these peptides are compared with NMR data for a homologous peptide NP-5 [Bach, A. C., Selsted, M. E., & Pardi, A. (1987) Biochemistry 26, 4389-4397]. Analysis of the conformation-dependent proton chemical shifts shows that it is not possible to confidently judge the structural similarity of the three defensins from chemical shift data alone. However, comparison of the 3JHN alpha coupling constants in NP-2 and NP-5 indicates that the backbone conformations for these peptides are very similar. A more detailed comparison of the solution conformations of the defensins peptides is made in the following paper in this issue where the NMR data are used as input for distance geometry and molecular dynamics calculations to determine the three-dimensional structures of HNP-1 and NP-2.  相似文献   

7.
Jing W  Hunter HN  Tanabe H  Ouellette AJ  Vogel HJ 《Biochemistry》2004,43(50):15759-15766
Mammalian defensins are abundant antimicrobial peptides that contribute to host defense. They are characterized by several conserved amino acids, including six invariant cysteine residues which form three intramolecular disulfide bonds and stabilize the tertiary structure. Cryptdin-4 (Crp4), a mouse alpha-defensin with potent in vitro bactericidal activity, has a primary structure distinct from all known alpha-defensins in that its polypeptide backbone uniquely lacks three residues between Cys(IV) and Cys(V). NMR diffusion experiments showed that Crp4 is monomeric in solution, and its three-dimensional solution structure, determined by two-dimensional proton NMR, consists of a triple-stranded antiparallel beta-sheet with the beta-strands joined to each other by a series of tight turns and a beta-hairpin. However, the overall beta-sheet content in Crp4 is lower than that of other alpha-defensin structures, while the shape and orientation of the Crp4 beta-hairpin also differ from those of other alpha-defensin structures. These structural characteristics combined with the high overall cationicity of Crp4 may contribute to its broad bactericidal spectrum and membrane disruptive activity.  相似文献   

8.
Shen G  Pang Y  Wu W  Miao Z  Qian H  Zhao L  Sun X  Tang K 《Journal of plant physiology》2005,162(10):1160-1168
A novel defensin gene was isolated from Ginkgo biloba. The full-length cDNA of G. biloba defensin (designated as Gbd) was 534bp. The cDNA contained a 240-bp open reading frame encoding an 80-amino acid protein of 5.68 kDa with a potential 30 aa signal peptide. The putative GbD mature protein showed striking similarity to other plant defensins, representing low molecular size antimicrobial polypeptides. Eight cysteine sites conserved in plant defensins were also found in GbD at similar positions. Three-dimensional structure modeling showed that GbD strongly resembled defensin from tobacco (NaD1) and consisted of an alpha-helix and a triple-strand antiparallel beta-sheet that were stabilized by four intramolecular disulfide bonds, implying GbD may have functions similar to NaD1. The genomic DNA gel blot indicated that Gbd belonged to a multigene family. Expression analysis revealed that Gbd was up-regulated by wounding and methyl jasmonate treatments, suggesting that Gbd is potentially involved in plant resistance or tolerance to pathogens during wounding.  相似文献   

9.
Defensins are antimicrobial peptides expressed by plants and animals. In mammals there are three subfamilies of defensins, distinguished by structural features: α, β and θ. Alpha and β-defensins are linear peptides with broad anti-microbial activity that are expressed by many mammals including humans. In contrast, θ-defensins are cyclic anti-microbial peptides made by several non-human primates but not humans. All three defensin types have anti-HIV-1 activity, but their mechanisms of action differ. We studied the anti-HIV-1 activity of one defensin from each group, HNP-1 (α), HBD-2 (β) and RTD-1 (θ). We examined how each defensin affected HIV-1 infection and demonstrated that the cyclic defensin RTD-1 inhibited HIV-1 entry, while acyclic HNP-1 and HBD-2 inhibited HIV-1 replication even when added 12 hours post-infection and blocked viral replication after HIV-1 cDNA formation. We further found that all three defensins downmodulated CXCR4. Moreover, RTD-1 inactivated X4 HIV-1, while HNP-1 and HBD-2 inactivated both X4 and R5 HIV-1. The data presented here show that acyclic and cyclic defensins block HIV-1 replication by shared and diverse mechanisms. Moreover, we found that HNP-1 and RTD-1 directly inhibited firefly luciferase enzymatic activity, which may affect the interpretation of previously published data.  相似文献   

10.
A large and steadily growing subfamily of antimicrobially active peptides of animals and plants is formed by the defensins, which are highly disulfide-bonded, cationic peptides with a molecular mass of about 4 kDa. The synthesis of the human beta-defensins 1 and 2 (hBD-1, hBD-2) as well as of the novel murine beta-defensins 7 and 8 (mBD-7 and mBD-8) is reported. The peptides were synthesized by solid-phase peptide synthesis using fluorenylmethoxycarbonyl chemistry. The linear products were oxidized in the presence of the cysteine/cystine redox system to the biologically active molecules. The correct disulfide connectivity of the resulting cyclic products was partly verified by mass spectrometry and sequence analysis of the fragments obtained after tryptic cleavage. In addition, the recently discovered antimicrobially active human peptide LEAP-1/hepcidin, which contains four disulfide bonds, was successfully synthesized and subsequently oxidized. For Liver-expressed anti microbial peptide (LEAP)-1/hepcidin and hBD-1, the identity of native and synthetic peptides was demonstrated by high-pressure liquid chromatography and capillary electrophoretic analysis. The general synthetic procedure is suitable to rapidly perform the total chemical synthesis of novel fully bioactive defensins, which are expected to be identified soon, as well as of structurally modified analogs.  相似文献   

11.
Structure of the antimicrobial peptide tachystatin A   总被引:4,自引:0,他引:4  
The solution structure of antimicrobial peptide tachystatin A from the Japanese horseshoe crab (Tachypleus tridentatus) was determined by two-dimensional nuclear magnetic resonance measurements and distance-restrained simulated annealing calculations. The correct pairs of disulfide bonds were also confirmed in this study. The obtained structure has a cysteine-stabilized triple-stranded beta-sheet as a dominant secondary structure and shows an amphiphilic folding observed in many membrane-interactive peptides. Interestingly, tachystatin A shares structural similarities with the calcium channel antagonist omega-agatoxin IVA isolated from spider toxin and mammalian defensins, and we predicted that omega-agatoxin IVA also have the antifungal activity. These structural comparisons and functional correspondences suggest that tachystatin A and omega-agatoxin IVA may exert the antimicrobial activity in a manner similar to defensins, and we have confirmed such activity using fungal culture assays. Furthermore, tachystatin A is a chitin-binding peptide, and omega-agatoxin IVA also showed chitin-binding activities in this study. Tachystatin A and omega-agatoxin IVA showed no structural homology with well known chitin-binding motifs, suggesting that their structures belong to a novel family of chitin-binding peptides. Comparison of their structures with those of cellulose-binding proteins indicated that Phe(9) of tachystatin A might be an essential residue for binding to chitin.  相似文献   

12.
Varkey J  Singh S  Nagaraj R 《Peptides》2006,27(11):2614-2623
The antibacterial activity of peptides without disulfide bridges, spanning the carboxy-terminal segment of arthropod defensins, has been investigated. Although all the peptides have net positive charges, they exhibited varying antibacterial potencies and spectra. Atomic force and fluorescence microscopic analyses indicate that the peptides exert their activity by permeabilizing the outer and inner membranes of Gram-negative bacteria such as Escherichia coli. It appears that the plasticity observed in the activity of mammalian defensins with respect to sequence, number of disulfide bridges or net positive charge, is also observed in insect defensins.  相似文献   

13.
The structure of a novel plant defensin isolated from the flowers of Petunia hybrida has been determined by (1)H NMR spectroscopy. P. hybrida defensin 1 (PhD1) is a basic, cysteine-rich, antifungal protein of 47 residues and is the first example of a new subclass of plant defensins with five disulfide bonds whose structure has been determined. PhD1 has the fold of the cysteine-stabilized alphabeta motif, consisting of an alpha-helix and a triple-stranded antiparallel beta-sheet, except that it contains a fifth disulfide bond from the first loop to the alpha-helix. The additional disulfide bond is accommodated in PhD1 without any alteration of its tertiary structure with respect to other plant defensins. Comparison of its structure with those of classic, four-disulfide defensins has allowed us to identify a previously unrecognized hydrogen bond network that is integral to structure stabilization in the family.  相似文献   

14.
The crystal structure of the "long" alpha-neurotoxin alpha-cobratoxin was refined to an R-factor of 19.5% using 3271 x-ray data to 2.4-A resolution. The polypeptide chain forms three loops, I, II, III, knotted together by four disulfide bridges, with the most prominent, loop II, containing another disulfide close to its lower tip. Loop I is stabilized by one beta-turn and two beta-sheet hydrogen bonds; loop II by eight beta-sheet hydrogen bonds, with the tip folded into two distorted right-handed helical turns stabilized by two alpha-helical and two beta-turn hydrogen bonds; and loop III by hydrophobic interactions and one beta-turn. Loop II and one strand of loop III form an antiparallel triple-pleated beta-sheet, and tight anchoring of the Asn63 side chain fixes the tail segment. In the crystal lattice, the alpha-cobratoxin molecules dimerize by beta-sheet formation between strands 53 and 57 of symmetry-related molecules. Because such interactions are found also in a cardiotoxin and alpha-bungarotoxin, this could be of importance for interaction with acetylcholine receptor.  相似文献   

15.
Structures of naturally occurring analogs of the B-loop fragment of human epidermal growth factor-like (hEGF-like) polypeptides were examined by molecular dynamics simulation in order to predict their secondary structures, to find structural similarity and to detect any weakly polar aromatic-aromatic (pi-pi) or amide-aromatic (N-pi) interactions which stabilize the structures. NPT molecular dynamics simulations (1 ns) were performed by the GRO-MACS package with SPC/E water using a weak temperature and pressure coupling method. During the sampling time, the structures of all peptides showed a characteristic secondary structure with a turn and bend at residues 4-7, and a beta-sheet, beta-bridge and random coil at the N- and C-terminal regions. Though the peptide chains were flexible, the stabilization effect of the N-pi interactions was indicated in some cases by the angles and distances between the centroids of aromatic planes of the side-chains and the H-atom of peptide bonds and the planes of the aromatic side-chains, respectively. Pi-pi interactions occurred less frequently because of the flexibility of the short peptide chain.  相似文献   

16.
Kobayashi K  Sasaki T  Sato K  Kohno T 《Biochemistry》2000,39(48):14761-14767
We determined the three-dimensional structure of omega-conotoxin TxVII, a 26-residue peptide that is an L-type calcium channel blocker, by (1)H NMR in aqueous solution. Twenty converged structures of this peptide were obtained on the basis of 411 distance constraints obtained from nuclear Overhauser effect connectivities, 20 torsion angle constraints, and 21 constraints associated with hydrogen bonds and disulfide bonds. The root-mean-square deviations about the averaged coordinates of the backbone atoms (N, C(alpha), C, and O) and all heavy atoms were 0.50 +/- 0.09 A and 0.99 +/- 0.13 A, respectively. The structure of omega-conotoxin TxVII is composed of a triple-stranded antiparallel beta-sheet and four turns. The three disulfide bonds in omega-conotoxin TxVII form the classical cystine knot motif of toxic or inhibitory polypeptides. The overall folding of omega-conotoxin TxVII is similar to those of the N-type calcium channel blockers, omega-conotoxin GVIA and MVIIA, despite the low amino acid sequence homology among them. omega-Conotoxin TxVII exposes many hydrophobic residues to a certain surface area. In contrast, omega-conotoxin GVIA and MVIIA expose basic residues in the same way as omega-conotoxin TxVII. The channel binding site of omega-conotoxin TxVII is different from those of omega-conotoxin GVIA and MVIIA, although the overall folding of these three peptides is similar. The gathered hydrophobic residues of omega-conotoxin TxVII probably interact with the hydrophobic cluster of the alpha(1) subunit of the L-type calcium channel, which consists of 13 residues located in segments 5 and 6 in domain III and in segment 6 in domain IV.  相似文献   

17.
Yang YS  Mitta G  Chavanieu A  Calas B  Sanchez JF  Roch P  Aumelas A 《Biochemistry》2000,39(47):14436-14447
MGD-1 is a 39-residue defensin-like peptide isolated from the edible Mediterranean mussel, Mytilus galloprovincialis. This peptide is characterized by the presence of four disulfide bonds. We report here its solid-phase synthesis and an easy way to improve the yield of the four native disulfide bonds. Synthetic and native MGD-1 display similar antibacterial activity, suggesting that the hydroxylation of Trp28 observed in native MGD-1 is not involved in the antimicrobial effect. The three-dimensional solution structure of MGD-1 has been established using (1)H NMR and mainly consists of a helical part (Asn7-Ser16) and two antiparallel beta-strands (Arg20-Cys25 and Cys33-Arg37), together giving rise to the common cystine-stabilized alpha-beta motif frequently observed in scorpion toxins. In MGD-1, the cystine-stabilized alpha-beta motif is stabilized by four disulfide bonds (Cys4-Cys25, Cys10-Cys33, Cys14-Cys35, and Cys21-Cys38), instead of by the three disulfide bonds commonly found in arthropod defensins. Except for the Cys21-Cys38 disulfide bond which is solvent-exposed, the three others belong to the particularly hydrophobic core of the highly constrained structure. Moreover, the C4-P5 amide bond in the cis conformation characterizes the MGD-1 structure. MGD-1 and insect defensin A possess similar bactericidal anti-Gram-positive activity, suggesting that the fourth disulfide bond of MGD-1 is not essential for the biological activity. In agreement with the general features of antibacterial peptides, the MGD-1 and defensin A structures display a typical distribution of positively charged and hydrophobic side chains. The positively charged residues of MGD-1 are located in three clusters. For these two defensin peptides isolated from insects and mollusks, it appears that the rather well conserved location of certain positively charged residues and of the large hydrophobic cluster are enough to generate the bactericidal potency and the Gram-positive specificity.  相似文献   

18.
Weiss TM  Yang L  Ding L  Waring AJ  Lehrer RI  Huang HW 《Biochemistry》2002,41(31):10070-10076
RTD-1 is a recently discovered cyclic peptide that, like other well-studied antimicrobial peptides, appears to bind to the lipid matrix of cell membrane in the initial stage of activity. We studied the states of RTD-1 bound to lipid bilayers by two methods: oriented circular dichroism and X-ray diffraction. RTD-1 shows two physically distinct bound states in lipid bilayers like magainins, protegrins, alamethicin, and melittin that were previously studied. However, the nature of transition between the two states is different for RTD-1 as compared with the aforementioned peptides. In one of the two states, RTD-1 is oriented with its backbone ring parallel to the plane of the bilayer. Only in this state RTD-1 induces membrane thinning. But the effect of membrane thinning is much weaker than all other peptides, suggesting that the mechanism of RTD-1 may be different from the other peptides.  相似文献   

19.
20.
To elucidate the structural features of the mussel defensin MGD1 required for antimicrobial activity, we synthesized a series of peptides corresponding to the main known secondary structures of the molecule and evaluated their activity towards Gram-positive and Gram-negative bacteria, and filamentous fungi. We found that the nonapeptide corresponding to residues 25-33 of MGD1 (CGGWHRLRC) exhibited bacteriostatic activity once it was cyclized by a non-naturally occurring disulfide bridge. Longer peptides corresponding to the amino acid sequences of the alpha-helical part or to the beta-strands of MGD1 had no detectable activity. The bacteriostatic activity of the sequence 25-33 was strictly dependent on the bridging of Cys25 and Cys33 and was proportional to the theoretical isoelectric point of the peptide, as deduced from the variation of activity in a set of peptide analogues of the 25-33 sequence with different numbers of cationic charges. By using confocal fluorescence microscopy, we found that the cyclic peptides bound to Gram-positive bacteria without apparent lysis. However, by using a fluorescent dye, we observed that dead bacteria had been permeated by the cyclic peptide 25-33. Sequence comparisons in the family of arthopod defensins indicate that MGD1 belongs to a subfamily of the insect defensins, characterized by the constant occurrence of both positively charged and hydrophobic amino acids in the loop. Modelling studies showed that in the MGD1 structure, positively charged and hydrophobic residues are organized in two layered clusters, which might have a functional significance in the docking of MGD1 to the bacterial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号