首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The human apolipoprotein C-II locus exhibits genetically determined structural polymorphism in United States and African blacks. In the present study, we have investigated the effect of the apoC-II polymorphism on quantitative serum levels of total cholesterol, total high density lipoprotein (HDL) cholesterol, cholesterol in high density lipoprotein subfractions, low density lipoprotein (LDL) cholesterol, and triglycerides (TG) in a sample of 368 unrelated Nigerian blacks. The frequencies of the APOC-II*1 and APOC-II*2 alleles in the samples were 0.947 and 0.053, respectively. In males, the effect of the APOC-II*2 allele was to lower the total serum cholesterol and LDL-cholesterol levels by 13.28 mg/dl and 10.55 mg/dl, respectively, relative to the common allele, APOC-II*1. In females, the effect was to lower total plasma cholesterol by 4.49 mg/dl and LDL-cholesterol by 3.21 mg/dl. The effect of apoC-II on quantitative lipoprotein levels is shown to be independent of variation at the linked apoE locus, but the products of the two loci interact in determining overall quantitative phenotypes.  相似文献   

2.
Application of uniform methods for measuring the apolipoprotein (apo) E polymorphism and plasma cholesterol levels in nine populations (Tyrolean, Sudanese, Indian, Chinese, Japanese, Hungarian, Icelandic, Finnish, and Malay) revealed significant heterogeneity among them in apo E type frequencies and mean cholesterol levels. The major apo E types in all populations were E3/2 (frequency range from 7.0% in Indians to 16.9% in Malays), E3/3 (frequency range from 39.8% in Sudanese to 72.1% in Japanese), and E3/4 (frequency range from 11.3% in Japanese to 35.9% in Sudanese). Mean cholesterol levels ranged from 144.2 mg/dl in the Sudanese to 228.5 mg/dl in the Icelandics. Two-way analysis of variance of the effect of population and apo E type on cholesterol levels showed no significantly interaction effect, indicating that the effects of apo E type on cholesterol levels do not differ significantly among the populations. The overall average excess for the epsilon 2 allele was -14.12 mg/dl (range -31.63 to -8.82 mg/dl); for the epsilon 3 allele, 0.04 mg/dl (range -1.87 to 1.58 mg/dl; and for the epsilon 4 allele, 8.14 mg/dl (range -1.71 to 13.31 mg/dl). Despite the apparent heterogeneity in these values, especially for the epsilon 4 allele, comparison of the average excesses by a method of repeated sampling with random permutations revealed no significant difference in effects among populations. These data indicate that a given apo E allele acts in a relatively uniform manner in different populations despite differences in genetic background and environmental factors.  相似文献   

3.
Summary Human apolipoprotein A-IV (apo A-IV) exhibits a genetic polymorphism with two common alleles, A-IV1 and A-IV2, in Caucasian populations. We have investigated this polymorphism in the Icelandic population. The frequencies of the two alleles are significantly different from middel European populations with a higher frequency of the A-IV2 allele (0.117 versus 0.077) occurring in Iceland. The alleles at the apo A-IV locus have significant effects on plasma high density lipoprotein cholesterol (HDL-C) and triglyceride levels. The average effect of the A-IV2 allele is to raise HDL-C by 4.9 mg/dl and to lower triglyceride levels by 19.4mg/dl. We estimate that the genetic variability at the apo A-IV gene locus accounts for 3.1% of the total variability of HDL-C and for 2.8% of the total variability of triglycerides in the population from Iceland. This confirms and extends our previous observations on apo A-IV allele effects in Tyroleans in an independent population.  相似文献   

4.
Human apolipoprotein (apo) E is polymorphic. We have investigated the effect of the apo-E polymorphism on quantitative plasma levels of apo E, apo B, and total cholesterol in a sample of 563 blood-bank donors from Marburg and Giessen, West Germany. The relative frequencies of the epsilon 2, epsilon 3, and epsilon 4 alleles are .063, .793, and .144, respectively. The average effects of the epsilon 2 allele are to raise apo-E levels by 0.95 mg/dl, lower apo B levels by 9.46 mg/dl, and lower total cholesterol levels by 14.2 mg/dl. The average effects of the epsilon 4 allele are to lower apo-E levels by 0.19 mg/dl, to raise apo-B levels by 4.92 mg/dl, and to raise total cholesterol levels by 7.09 mg/dl. The average effects of the epsilon 3 allele are near zero for all three phenotypes. The apo-E polymorphism accounts for 20% of the variability of plasma apo-E levels, 12% of the variability of plasma apo-B levels, and 4% of the variability of total plasma cholesterol levels. The inverse relationship between the genotype-specific average apo-E levels and both the genotype-specific average apo-B and cholesterol levels is offset by a positive relationship between apo-E levels and both apo-B and cholesterol levels within an apo-E genotype. The apo-E polymorphism also has a direct effect on the correlation between apo-E and total cholesterol levels. The implication of these results on multivariate genetic analyses of these phenotypes is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Apolipoprotein J (apo J) is a newly identified member of a growing family of proteins associated with various lipoprotein particles. Apo J is a glycoprotein which exists in the plasma associated with high-density lipoprotein subfractions which also contain apo A-I and cholesteryl ester transfer protein (CETP). We have investigated the possible existence of genetic polymorphism at the apo J structural locus and have evaluated its role in lipid metabolism. By employing isoelectric focusing and immunoblotting techniques, we have screened plasma or serum samples from six population groups: U.S. whites, Amerindians, Eskimos, New Guineans, U.S. blacks, and Nigerian blacks. Apo J revealed a common two-allele polymorphism only in populations with African ancestry and was found to be monomorphic in all other population groups tested. The genetic basis of the two alleles designated--APO J*1 and APO J*2, at a single structural locus, apo J-- was confirmed in a large number of segregating families. In the U.S. blacks, the frequencies of the APO J*1 and APO J*2 alleles were .76 and .24, respectively, and in the Nigerian blacks these values were .72 and .28, respectively. In addition, a single example of a rare allele designated APO J*3 was also encountered in the U.S. black sample. In Nigerian blacks, the apo J polymorphism's impact on seven quantitative lipid traits--total cholesterol, LDL-cholesterol, HDL-cholesterol, HDL3-cholesterol, HDL2-cholesterol, VLDL-cholesterol, and triglycerides--was investigated. No significant impact of the apo J polymorphism was observed for any of these lipid traits.  相似文献   

6.
Apolipoprotein A-IV exhibits a common two-allele polymorphism in several human populations studied to date. Using isoelectric focusing and immunoblotting, we have analyzed plasmas from 188 non-insulin-dependent diabetic and 238 normoglycemic Hispanic individuals from the San Luis Valley, Colorado, to determine APOA4 genotype frequencies and to estimate the impact of the genotypes on quantitative traits. The frequencies of the two common alleles, APOA4*1 and APOA4*2, were 0.929 and 0.069, respectively, in normal subjects and 0.901 and 0.096, respectively, in diabetics. The third rare allele, APOA4*3, was detected sporadically in both groups. We studied the impact of APOA4 polymorphism on the levels of total plasma cholesterol, HDL cholesterol and its subfractions (HDL3 and HDL2), LDL cholesterol, triglycerides, glucose, and insulin. We observed no significant effect of the APOA4 polymorphism on any trait in diabetics. However, we did note a significant sex-specific effect in normoglycemic females on the level of total HDL cholesterol (p = 0.001) and its subfractions HDL2 (p = 0.043) and HDL3 (p = 0.001). The effect of the APOA4*2 allele in normal Hispanic females was to lower the total HDL, HDL2, and HDL3 cholesterol by 8.75 mg/dl, 2.37 mg/dl, and 5.36 mg/dl, respectively, compared to the common APOA4*1 allele.  相似文献   

7.
Recently, we determined the apolipoprotein E (apoE) phenotype distribution in 2,000 randomly selected 35-year-old male individuals by slab gel isoelectric focusing of delipidated plasma samples, followed by immunoblotting using anti-apoE antiserum. These blots have been successfully re-used for immunovisualization of apoA-IV isoelectric focusing patterns. In a population sample of 1,393 individuals, four distinct apoA-IV isoforms were detected, encoded by the alleles A-IV*0, A-IV*1, A-IV*2, and A-IV*3 with gene frequencies of 0.002, 0.901, 0.079, and 0.018, respectively. The mean of plasma cholesterol, triglyceride, apoB and E levels did not differ significantly among the different apoA-IV phenotype groups. For these lipoprotein parameters, less than 0.1% of the total phenotypic variance could be accounted for by the APOA-IV gene locus. Our results did not show any effect of apoA-IV polymorphism on plasma apoA-I levels nor could we find any correlation between plasma levels of apoA-I and apoA-IV within the different apoA-IV phenotype groups. The plasma level of apoA-IV in subjects bearing the A-IV*3 allele is significantly lower than in subjects without the A-IV*3 allele (5 mg/dl versus 14 mg/dl). We therefore conclude that, in contrast to the apoE polymorphism, the polymorphism at the APOA-IV locus does not influence any of the levels of the lipoprotein parameters considered except apoA-IV.  相似文献   

8.
Apolipoprotein D (APO D) is a constituent of plasma high-density lipoproteins. Its precise role in lipid metabolism is not well established, though it may be involved in cholesterol esterification and cholester ester transport to the liver for catabolism. No genetic polymorphism has been reported in the APO D gene product. To investigate the extent of genetic variation at the APO D structural locus, we have developed an isoelectric focusing-immunoblotting technique and have screened a large number of plasma samples from U.S. whites, U.S. blacks, Nigerian blacks, the Aleuts of the Pribilof Islands, Eskimo groups from Kodiak Island and St. Lawrence Island, and Amerindian populations from Mexico and Canada. Except for the U.S. blacks and Nigerian blacks, the APO D locus is monomorphic in all other population groups tested. In populations with black ancestry, the products of two alleles, APO D*1 and APO D*2, have been observed at respective allele frequencies .987 and .013 in U.S. blacks and .978 and .022 in Nigerian blacks. The detection of a unique protein polymorphism in blacks makes APO D a useful black marker of significance in anthropogenetics and racial admixture studies. In addition to the interindividual variation observed, APO D reveals extensive intraindividual molecular variation with a multiple banding pattern. The basis of this molecular variation is explained, in part, by variation in the number of terminal sialic acid residues. We have investigated the effect of the APO D polymorphism on triglycerides, total cholesterol, LDL-, VLDL-, HDL-, and HDL3 cholesterol in 352 Nigerian blacks (190 males and 162 females).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Human apolipoproteins (apo) E and apo A-IV are polymorphic with significantly different allele frequencies among different ethnic groups. Whereas the variation at the apo E gene locus affects plasma cholesterol levels in all populations studied so far and is associated with longevity in Caucasians, the influence of the common apo A-IV polymorphism on plasma lipoproteins has not been unanimously accepted. We have therefore determined the common apo E and apo A-IV polymorphisms by isoelectric focusing, calculated the respective allele frequencies and studied their effects on plasma lipoproteins in a random sample of 240 nonrelated Turkish subjects (141 males, 99 females) living in Germany and originating from central and eastern Anatolia. When compared with the German population and other Caucasians in Europe a prominence of the apo ɛ3 allele frequency (0.885) was accompanied by a decrease in the frequencies of both the apo ɛ2 allele (0.048) and the apo ɛ4 allele (0.067). Thus, the Turkish population studied here clustered with populations mainly from southern Europe and Japan, which have low ɛ2 and ɛ4 allele frequencies. Also, the frequency of the A-IV-1 allele was higher (0.967) and that of the A-IV-2 allele lower (0.033) in the Turkish subjects studied than in other populations. At an average level of total cholesterol of 194.5 ± 45 mg/dl, no significant influence of the A-IV alleles on plasma lipoproteins was seen. However, apo E and apo B differed significantly between apo E phenotypes, with high levels of apo E and low levels of cholesterol and apo B in carriers of the ɛ2 allele, and vice versa for the ɛ4 allele. The average cholesterol excess for the ɛ2 allele was –7.95 mg/dl, for the ɛ3 allele, –1.34, and for the ɛ4 allele, +14.15 mg/dl. Thus, despite the unusual frequency distribution of the apo E alleles, their effects on plasma lipoproteins are within the range reported for other populations in Europe. Received: 10 April 1995 / Revised: 25 March 1996  相似文献   

10.
Variation in human apolipoprotein genes is a major source of phenotypic differences in human lipid metabolism. Data regarding genetic variation at apolipoprotein loci in various populations are only beginning to accumulate, and they suggest that different populations vary widely in distribution of apolipoprotein alleles. Using isoelectric focusing-immunoblotting techniques, we screened 67 serum samples from self-identified Samoan residents of American Samoa to investigate structural variation at six apolipoprotein loci: A-I, A-II, A-IV, C-II, E, and H. The APO A-I, A-II, and C-II loci were found to be monomorphic by isoelectrical focusing. In Samoans, the common three-allele polymorphism was observed for APO E, with no striking differences in frequencies from Caucasian populations. The three common alleles of the APO H locus also were identified; however, frequencies of the less common alleles (APO H*I and APO H*3) were different from those observed elsewhere for Caucasians.  相似文献   

11.
Apolipoprotein E (APOE) polymorphism is a predictor of interindividual variability in plasma levels of lipids and lipoproteins and a predictor of risk of coronary artery disease (CAD). We studied the relationship between APOE polymorphism and lipid profiles and risk of CAD in Omani dyslipidemic patients. This retrospective study included 244 dyslipidemic patients, of whom 67 had CAD. Fasting blood glucose, lipids, and plasma lipoprotein levels were measured using standard methods, and APOE genotypes were detected by PCR-RFLP. The dyslipidemic patients had the following APOE allele frequencies: APOE*2, 0.030; APOE*3, 0.894; and APOE*4, 0.076. APOE allele frequencies between patients with and without CAD showed no significant differences. Compared to APOE*3/*3 homozygotes, APOE*4 allele patients had higher mean levels of low-density lipoprotein (LDL) cholesterol (p = 0.014), apoB (p = 0.031), lower mean levels of apoA1 (p = 0.043), and a trend of higher mean level of total cholesterol (p = 0.084). Thirty-one percent of patients with CAD had the APOE*4 allele compared to 26% with the APOE*3 allele, but this difference was not significant. Compared with APOE*3/*3 homozygotes, patients with the APOE*4 allele had 1.3 times higher risk for CAD after ignoring dyslipidemia, but this risk was modified after adjusting for dyslipidemia. In conclusion, among dyslipidemic patients, carriers of APOE*4 compared to homozygous carriers of APOE*3 had significantly higher levels of LDL cholesterol and apoB, but no relationship with CAD was found.  相似文献   

12.
Apolipoprotein C-III (APO C-III) is a structural component of very-low-density and high-density lipoprotein particles and is an inhibitor of lipoprotein lipase. In a study of genetic variation of apolipoproteins in the Mayan population of the Yucatán peninsula, we observed a quantitative polymorphism in APO C-III levels. This polymorphism is expressed as variation in immunoblot staining intensity following isoelectric focusing and as variation in plasma levels of APO C-III determined by radial immunodiffusion. This variation is consistent with the presence in Mayans of an allele associated with low levels of plasma APO C-III which we have designated APO C-III*D. Analysis of the distribution of APO C-III levels yields a gene frequency estimate for the deficiency allele of 0.59. There is a significant positive correlation between total plasma APO C-III levels and total plasma cholesterol and triglyceride levels, the lowest levels of cholesterol and triglycerides being seen in individuals homozygous for the deficiency allele. This observation is consistent with the proposed role of APO C-III in lipoprotein metabolism. Family data to determine whether this deficiency allele is due to mutation at the APO C-III structural locus were not available. However, molecular analysis using cloned probes from the APO A-I/C-III/A-IV gene cluster revealed no gross DNA rearrangement or deletion of sequences in this region in homozygous deficient individuals.  相似文献   

13.
Previous studies in the Mexican population have failed to show an effect of apolipoprotein E (APOE) polymorphism on the lipid profile. The purpose of the present study was to determine the frequencies of APOE phenotypes, and their influence on lipid and apolipoprotein levels in a random sample of Mexican adolescents living in Mexico City. APOE polymorphism, fasting insulin levels, lipid levels, and apolipoprotein levels were determined in 420 adolescents. We found a high frequency of APOE*3 subjects (89.5%) and a low frequency of APOE*2 (3.0%) and APOE*4 (7.5%) subjects. The APOE*4 subjects (including APOE 4,3 and APOE 4,4) showed the highest concentrations of total cholesterol, low-density lipoprotein cholesterol, and apoB and the lowest high-density lipoprotein cholesterol levels, whereas carriers of the APOE*2 allele (APOE 3,2 and APOE 2,2) had the lowest values for total and low-density lipoprotein cholesterol and the highest concentrations of high-density lipoprotein cholesterol. No significant differences in triglyceride and insulin levels among subjects with different APOE polymorphisms were observed. Unlike previous studies in the Mexican population, our results show that lipid and lipoprotein levels are under the influence of APOE polymorphism. As in whites, APOE*4 may be a cardiovascular risk factor in the Mexican population.  相似文献   

14.
Apolipoproteins E and CI are the predominant components of triglyceride-rich lipoproteins. The genes are located in one gene cluster and both are polymorphic. Three allelic (epsilon2, epsilon3 and epsilon4) polymorphisms of the APOE gene influence plasma cholesterol levels. The distribution of these alleles differ between ethnic groups. PCR genotyping was used to determine the APOE and APOCI allele incidence in a representative group of 653 probands (302 men and 351 women) of Czech origin. The observed relative frequencies for the epsilon2, epsilon3 and epsilon4 alleles were 7.1 %, 82.0 % and 10.9 %, respectively, and are similar to other middle European populations. APO epsilon4 carriers have the highest and APO epsilon2 carriers the lowest levels of plasma total cholesterol (p<0.0001) and LDL cholesterol (p<0.0001). The frequency of the insertion (I) allele (HpaI restriction site present) of the APOCI polymorphism was 18.5 %. APOCI I/I homozygotes have the highest level of triglycerides (p<0.003). An almost complete linkage disequilibrium of the insertion allele of APOCI with the APOE alleles epsilon2 and epsilon4 has been detected and suggests that the deletion in the APOCI gene probably follows the deriving of all three APOE alleles on the APO epsilon3 allele background.  相似文献   

15.
Genetic studies of human apolipoproteins   总被引:5,自引:0,他引:5  
Summary Apolipoprotein H (APO H) has recently been identified as a structural component of chylomicrons, very low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). Although the precise metabolic function of APO H in lipid metabolism is not certain, it has been suggested that APO H may be involved in triglyceride (TG) metabolism. In addition to the previously described quantitative polymorphism, we have recently detected a common qualitative polymorphism at the APO H structural locus. To test the role of APO H genetic variation in determining lipoprotein and lipid levels, we have estimated the allelic effects of APO H variation on TG, VLDL, LDL, HDL, HDL3, and total cholesterol on 356 Nigerian blacks(189 males, 167 females). While no significant effect of phenotype was observed on lipoprotein levels, the effect of interaction between phenotype and gender was significant. Therefore, data on males and females were analyzed separately using analysis of variance after adjusting for age and body mass index. Logarithmic transformation of pertinent variables was done to bring the distribution of the variables closer to normality. A statistically significant effect of phenotype was observed on triglyceride levels in females only (P<0.05). Further analysis of this phenotypic effect revealed that it is due to the impact of the APO H * 3 allele, which raises triglycerides by 9.92 mg/dl as compared to the common allele, APO H * 2. These findings are in accordance with the postulated role of APO H in triglyceride metabolism. On the basis of its sex-specific effect, we propose a hypothesis that may explain the combined influence of the quantitative and qualitative polymorphisms at the APO H locus on triglyceride levels in females.  相似文献   

16.
Using a simple and rapid one-dimensional isoelectric focusing technique followed by immunoblotting, we have detected genetic polymorphism of human apolipoprotein C-II (APO C-II) in normal unfractionated plasma samples of individuals of black ancestry. Two common autosomal codominantly expressed alleles, designated APO C-II*1 and APO C-II*2, at the APO C-II structural locus have been observed with frequencies of 0.975 and 0.025 in US blacks and 0.943 and 0.049 in Nigerian blacks. In addition, the gene product of a rare allele designated APO C-II*3 was observed in a single Nigerian black. Apart from a single example of an APO C-II 2-1 phenotype in plasma samples from 187 whites, which was electrophoretically identical to the 2-1 phenotype observed in blacks, it appears that APO C-II*2 is a unique black marker of potential importance in anthropogenetic and atherosclerosis studies.  相似文献   

17.
The influence of apolipoprotein E (APOE) genotypes on plasma lipid levels was determined in 278 Mexican individuals. The most frequent genotype was E3/3 (80.5%) followed by E3/4 (12.5%), E2/3 (5.0%), E2/4 (1.4%), and E4/4 (0.3%). Our data are similar to those previously described for Mexican-American and American Indian populations, which show the highest frequency worldwide of the APOE*3 and the E3/3 genotype. Compared to female carriers of the E3/3 genotype, women with the E3/4 genotype presented increased low-density lipoprotein cholesterol (117 +/- 28.0 mg/dL vs. 134.0 +/- 31.7 mg/dL, p < 0.05), and total cholesterol (179.4 +/- 33.4 mg/dL vs. 197.5 +/- 35.4 mg/dL, p < 0.01). Also, we detected increased high-density lipoprotein concentrations in women with the E2/3 genotype (53.7 +/- 19.5 mg/dL) when compared to women with the E3/3 genotype (45.2 +/- 12.0 mg/dL) (p < 0.032). Our data suggest that genetic variation at the APOE locus in the Mexican population is a genetic factor that influences plasma lipid levels. This effect was observed only in the female population. Additional studies attempting to correlate APOE polymorphism with plasma lipid profile in a large number of individuals would be helpful in establishing the true significance of this polymorphism in the Mexican population.  相似文献   

18.
The structural gene locus for apolipoprotein E (apo E) is polymorphic. Three common alleles (epsilon 2, epsilon 3, epsilon 4) code for three major isoforms in plasma and determine six apo E phenotypes that may be identified by isoelectric focusing on polyacrylamide. To establish what fraction of the inherited variation in a normal plasma lipid and lipoprotein profile is attributable to the segregation of the common alleles at the apo E gene locus, we have estimated the average apo E allelic effects on plasma cholesterol (C), triglycerides, very low-density lipoprotein (VLDL)-C, VLDL-apo B, low-density lipoprotein (LDL)-C, LDL-apo B, and high-density lipoprotein (HDL)-C in a representative sample of normolipidemic individuals from Ottawa, Canada. Data from published studies were also analyzed by the same statistical procedures. As much as 16% of the genetic variance (8.3% of the total variance) for LDL-C could be accounted for by the apo E gene locus. After correction for differences in age, sex, height, and weight, it was found that the epsilon 2 allele lowered and the epsilon 4 allele raised total cholesterol, LDL-C, and LDL-apo B. No other gene has been identified that contributes as much to normal cholesterol variability. Analysis of these data and those of others also indicates that the apo E locus imparts a differential susceptibility to a variety of factors that promote hyperlipidemia. The hypothesis is proposed that the epsilon 2 allele protects against coronary heart disease (CHD) and, hence, gives a reproductive advantage that is balanced by a predisposition to CHD when the epsilon 2 is combined with a second, independent causative factor to give a reproductive disadvantage. A similar mechanism is proposed for the maintenance of the epsilon 4 allele in the population.  相似文献   

19.
A large segment of the population is modifying its dietary cholesterol intake to achieve a healthier life-style. However, all individuals do not respond equally. We have investigated the effects that that two physiologically important polymorphisms in the apolipoprotein (apo) E and B genes have on the responses of plasma lipid, lipoprotein, and apolipoprotein levels to a high-cholesterol diet. Over a 6-wk period, individuals were prescribed two diets, one consisting of 300 mg dietary cholesterol/d for 3 wk and one consisting of 1,700 mg dietary cholesterol/d for 3 wk. Total cholesterol, low-density-lipoprotein cholesterol (LDL-C), and apo B levels were significantly increased on the high-cholesterol diet. Average total cholesterol (numbers in parentheses are SDs) went from 167.6 (23.4) mg/dl on the low-cholesterol diet to 190.8 (36.2) mg/dl on the high-cholesterol diet; LDL-C went from 99.9 (24.8) mg/dl to 119.2 (33.4) mg/dl, and apo B went from 74.9 (24.5) mg/dl to 86.8 (29.5) mg/dl. In 71 individuals, the frequencies of the apo epsilon 2, epsilon 3, and epsilon 4 alleles were .09, .84, and .07, respectively. The frequency of the longer, apo B signal peptide allele (5'beta SP27) was .68. Apo epsilon 2/3 individuals had significantly lower LDL-C levels than did epsilon 3/3 homozygotes, on both the low-cholesterol diet (LDL-C lower by 21 mg/dl) and the high-cholesterol diet (LDL-C lower by 27 mg/dl). Average triglyceride levels were significantly different among apo B signal peptide genotypes, with the 5'beta SP27/37 homozygotes having the lowest levels (70 mg/dl). When individuals were switched from the low-cholesterol diet to the high-cholesterol diet, in no case were the average responses in lipid levels significantly different among apo E or B genotypes. Therefore, these gene loci do not have a major effect on the response of lipid levels to increased dietary cholesterol.  相似文献   

20.
The response of serum lipids to dietary changes is to some extent an innate characteristic. One candidate genetic factor that may affect the response of serum lipids to a change in cholesterol intake is variation in the apolipoprotein A4 gene, known as the APOA4-1/2 or apoA-IVGln360His polymorphism. However, previous studies showed inconsistent results. We therefore fed 10 men and 23 women with the APOA4-1/1 genotype and 4 men and 13 women with the APOA4-1/2 or -2/2 genotype (carriers of the APOA4-2 allele) two diets high in saturated fat, one containing cholesterol at 12.4 mg/MJ, 136.4 mg/day, and one containing cholesterol at 86.2 mg/MJ, 948.2 mg/day. Each diet was supplied for 29 days in crossover design. The mean response of serum low density lipoprotein cholesterol was 0.44 mmol/l (17 mg/dl) in both subjects with the APOA4-1/1 genotype and in subjects with the APOA4-2 allele [95% confidence interval of difference in response, -0.20 to 0.19 mmol/l (-8 to 7 mg/dl)]. The mean response of high density lipoprotein cholesterol was also similar, 0.10 mmol/l (4 mg/dl), in the two APOA-4 genotype groups [95% confidence interval of difference in response, -0.07 to 0.08 mmol/l (-3 to 3 mg/dl)]. Thus, the APOA4-1/2 polymorphism did not affect the response of serum lipids to a change in the intake of cholesterol in this group of healthy Dutch subjects who consumed a background diet high in saturated fat. Knowledge of the APOA4-1/2 polymorphism is probably not a generally applicable tool for the identification of subjects who respond to a change in cholesterol intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号