首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Discoidin domain receptor 1 (DDR1) is a widely expressed tyrosine kinase receptor which binds to and gets activated by collagens including collagen type 1. Little is understood about the interaction of DDR1 with collagen and its possible functional implications. Here, we elucidate the binding pattern of the DDR1 extracellular domain (ECD) to collagen type 1 and its impact on collagen fibrillogenesis. Our in vitro assays utilized DDR1-Fc fusion proteins, which contain only the ECD of DDR1. Using surface plasmon resonance, we confirmed that further oligomerization of DDR1-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Single-molecule imaging by means of atomic force microscopy revealed that DDR1 oligomers bound at overlapping or adjacent collagen molecules and were nearly absent on isolated collagen molecules. Interaction of DDR1 oligomers with collagen was found to modulate collagen fibrillogenesis both in vitro and in cell-based assays. Collagen fibers formed in the presence of DDR1 had a larger average diameter, were more cross-linked and lacked the native banded structure. The presence of DDR1 ECD resulted in "locking" of collagen molecules in an incomplete fibrillar state both in vitro and on surfaces of cells overexpressing DDR1. Our results signify an important functional role of the DDR1 ECD, which occurs naturally in kinase-dead isoforms of DDR1 and as a shedded soluble protein. The modulation of collagen fibrillogenesis by the DDR1 ECD elucidates a novel mechanism of collagen regulation by DDR1.  相似文献   

2.
Collagens have recently been identified as ligands for discoidin domain receptors (DDR1 and DDR2), generating an interest in studying the properties of binding of DDR to its ligand. We are interested in the interaction of DDR2 with collagen I because of its potential role in liver fibrosis. Our in vitro binding assay utilizes DDR2-Fc fusion proteins, which can be clustered (multimerized) by use of antibodies to form DDR2 complexes. Binding of DDR2 complexes to collagen I coated on plastic plates was established by a microplate-based assay using Eu(3+)-labeled proteins and time-resolved fluorometry. Clustering of the DDR2-Fc with antibody was found to be requisite for binding to collagen in vitro. Using atomic force microscopy (AFM) in an aqueous environment, we characterized the surface topographies of DDR2 complexes and collagen I, and investigated binding of this receptor-ligand pair. We were able to image and identify binding of DDR2 complexes onto individual molecules of triple-helical collagen and provide insight into the number and locations of binding sites on collagen I. In most cases, a single receptor complex bound to a single collagen molecule and there were preferred DDR2 binding sites on the collagen I triple helix. These data were validated by rotary-replication transmission electron microscopy (TEM) of glycerol-sprayed samples.  相似文献   

3.
The binding and activation of the discoidin domain receptor 1 by collagen has led to the conclusion that proteins from the extracellular matrix can directly induce receptor tyrosine kinase-mediated signaling cascades. A region in the extracellular domain of DDR1 homologous to the Dictyostelium discoideum protein discoidin-I is also present in the secreted human protein RS1. Mutations in RS1 cause retinoschisis, a genetic disorder characterized by ablation of the retina. By introducing point mutations into the discoidin domain of DDR1 at positions homologous to the retinoschisis mutations, ligand binding epitopes in the discoidin domain of DDR1 were mapped. Surprisingly, some residues only affected receptor phosphorylation, whereas others influenced both collagen-binding and receptor activation. Furthermore, two truncated DDR1 variants, lacking either the discoidin domain or the stalk region between the discoidin and transmembrane domain, were generated. We showed that (i) the discoidin domain was necessary and sufficient for collagen binding, (ii) only the region between discoidin and transmembrane domain was glycosylated, and (iii) the entire extracellular domain was essential for transmembrane signaling. Using these results, we were able to predict key sites in the collagen-binding epitope of DDR1 and to suggest a potential mechanism of signaling.  相似文献   

4.
The discoidin domain receptor DDR2 is a receptor for type X collagen.   总被引:1,自引:0,他引:1  
During endochondral ossification, collagen X is deposited in the hypertrophic zone of the growth plate. Our previous results have shown that collagen X is capable of interacting directly with chondrocytes, primarily via integrin alpha2beta1. In this study, we determined whether collagen X could also interact with the non-integrin collagen receptors, discoidin domain receptors (DDRs), DDR1 or DDR2. The widely expressed DDRs are receptor tyrosine kinases that are activated by a number of different collagen types. Collagen X was found to be a much better ligand for DDR2 than for DDR1. Collagen X bound to the DDR2 extracellular domain with high affinity and stimulated DDR2 autophosphorylation, the first step in transmembrane signalling. Expression of DDR2 in the epiphyseal plate was confirmed by RT-PCR and immunohistochemistry. The spatial expression of DDR2 in the hypertrophic zone of the growth plate is consistent with a physiological interaction of DDR2 with collagen X. Surprisingly, the discoidin domain of DDR2, which fully contains the binding sites for the fibrillar collagens I and II, was not sufficient for collagen X binding. The nature of the DDR2 binding site(s) within collagen X was further analysed. In addition to a collagenous domain, collagen X contains a C-terminal NC1 domain. DDR2 was found to recognise the triple-helical region of collagen X as well as the NC1 domain. Binding to the collagenous region was dependent on the triple-helical conformation. DDR2 autophosphorylation was induced by the collagen X triple-helical region but not the NC1 domain, indicating that the triple-helical region of collagen X contains a specific DDR2 binding site that is capable of receptor activation. Our study is the first to describe a non-fibrillar collagen ligand for DDR2 and will form the basis for further studies into the biological function of collagen X during endochondral ossification.  相似文献   

5.
The anti-transplant rejection drug cyclosporin A (CsA) causes loss of collagen homeostasis in rapidly remodeling connective tissues, such as human gingiva. As a result of CsA treatment, collagen degradation by fibroblasts is inhibited, which leads to a net increase of tissue collagen and gingival overgrowth. Since fibrillar collagen is the primary ligand for the discoidin domain receptor 1 (DDR1), we hypothesized that CsA perturbs DDR1-associated functions that affect collagen homeostasis. For these experiments, human fibroblasts obtained from gingival explants or mouse 3T3 fibroblasts (wild type, over-expressing DDR1 or DDR1 knockdown) or mouse GD25 cells (expressing DDR1 but null for β1 integrin), were treated with vehicle (dimethyl sulfoxide) or with CsA. The effect of CsA on cell binding to collagen was examined by flow cytometry; cell-mediated collagen remodeling was analyzed with contraction, compaction and migration assays. We found that CsA inhibited cell binding to collagen, internalization of collagen, contraction of collagen gels and cell migration over collagen in a DDR1-dependent manner. CsA also enhanced collagen compaction around cell extensions. Treatment with CsA strongly reduced surface levels of β1 integrins in wild type and DDR1 over-expressing 3T3 cells but did not affect β1 integrin activation or focal adhesion formation. We conclude that CsA inhibition of collagen remodeling is mediated through its effects on both DDR1 and cell surface levels of the β1 integrin.  相似文献   

6.
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.  相似文献   

7.
Vogel WF 《FEBS letters》2002,514(2-3):175-180
Tyrosine kinases belonging to the discoidin domain receptor (DDR) family are activated upon stimulation with various types of collagen. In response to collagen treatment, immunoprecipitation of DDR1 with an antibody specific to the juxtamembrane region results in co-purification of a previously unrecognized tyrosine phosphorylated protein of 62 kDa molecular weight. Here, this protein is identified as C-terminal cleavage product of the full-length DDR1 receptor and a DDR1-specific shedding enzyme postulated. Shedding of DDR1 can be partially blocked by the furin inhibitor decanoyl-RVKR-chloromethylketone and completely inhibited by the hydroxamate-based inhibitor batimastat. The characteristic of the DDR1 sheddase to be blocked by batimastat suggests that it belongs to the membrane-bound matrix metalloproteinase or disintegrin and metalloproteinase family of proteases.  相似文献   

8.
Glial cell line-derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) are multifunctional signaling molecules in embryogenesis. HGF binds to and activates Met receptor tyrosine kinase. The signaling receptor complex for GDNF typically includes both GDNF family receptor alpha1 (GFRalpha1) and Ret receptor tyrosine kinase. GDNF can also signal independently of Ret via GFRalpha1, although the mechanism has remained unclear. We now show that GDNF partially restores ureteric branching morphogenesis in ret-deficient mice with severe renal hypodysplasia. The mechanism of Ret-independent effect of GDNF was therefore studied by the MDCK cell model. In MDCK cells expressing GFRalpha1 but no Ret, GDNF stimulates branching but not chemotactic migration, whereas both branching and chemotaxis are promoted by GDNF in the cells coexpressing Ret and GFRalpha1, mimicking HGF/Met responses in wild-type MDCK cells. Indeed, GDNF induces Met phosphorylation in several ret-deficient/GFRalpha1-positive and GFRalpha1/Ret-coexpressing cell lines. However, GDNF does not immunoprecipite Met, making a direct interaction between GDNF and Met highly improbable. Met activation is mediated by Src family kinases. The GDNF-induced branching of MDCK cells requires Src activation, whereas the HGF-induced branching does not. Our data show a mechanism for the GDNF-induced branching morphogenesis in non-Ret signaling.  相似文献   

9.
ABSTRACT

Collagen is the most abundant component of tumor extracellular matrix (ECM). ECM collagens are known to directly interact with the tumor cells via cell surface receptor and play crucial role in tumor cell survival and promote tumor progression. Collagen receptor DDR1 is a member of receptor tyrosine kinase (RTK) family with a unique motif in the extracellular domain resembling Dictyostelium discoideum protein discoidin-I. DDR1 displays delayed and sustained activation upon interaction with collagen and recent findings have demonstrated that DDR1-collagen signaling play important role in cancer progression. In this review, we discuss the current knowledge on the role of DDR1 in cancer metastasis and possibility of a potential therapeutic approach of DDR1 targeted therapy in cancer.  相似文献   

10.
T Kang  J Yi  W Yang  X Wang  A Jiang  D Pei 《FASEB journal》2000,14(15):2559-2568
MT3-MMP, a membrane-anchored matrix metalloproteinase, has been proposed to participate in the remodeling of extracellular matrix either by direct proteolysis or via activating other enzymes such as progelatinase A. To test this hypothesis, we analyzed the effect of exogenously transfected MT3-MMP in a tissue remodeling system: growth and tubulogenesis of Madin-Darby canine kidney (MDCK) cells in collagen gels. Although the parental cells require MMP activities for both growth and tubulogenesis, over-expression of wild-type MT3-MMP, but not its catalytically inactive mutant, leads to further enhancement of both processes, independent of its downstream substrate, progelatinase A. Mechanistically, MT3-MMP accomplishes such an effect by displaying on cell surfaces as active species, ready to activate progelatinase A or degrade ECM molecules. These data strongly suggest that MT3-MMP possesses the potential to directly enhance the growth and invasiveness of cells in vivo, two critical processes for development and carcinogenesis.  相似文献   

11.
We previously demonstrated that α3β1 integrins are essential to hepatocyte growth factor (HGF)-independent branching tubulogenesis in Mardin-Darby Canine Kidney (MDCK) cells. However, the involvement of integrin downstream signaling molecules remains unclear. In the present study, we successfully isolated cell lines possessing different tubulogenic potentials from the MDCK cells; cyst clones (CA4, CA6) forming cystic structures when cultured in 0.3% type I collagen gel and mass clones (M610, M611, M612) forming aggregated masses. Cyst clones maintained cystic structure in 0.1% collagen gel, whereas mass clones spontaneously developed into tubules. Both clones exhibited various morphologies when cultured on a dish: cyst clones formed aggregated islands, while mass clones were more scattered and exhibited higher migration capacity. Among several focal adhesion machinery proteins examined, only the expression and phosphorylation level of focal adhesion kinase (FAK) in mass clones was higher than in cyst clones, while other proteins showed no obvious differences. However, overexpression of wild type FAK in CA6 cells did not facilitate branching tubule formation in 0.1% collagen gel. Targeted decrease in the expression level of FAK in M610 cells with the application of antisense cDNA resulted in a marked reduction of branching tubule formation in 0.1% collagen gel and showed a down-regulation of fibronectin assembly, which is known to promote tubulogenesis. In contrast, overexpression of wild type FAK in CA6 cells had no effect on fibronectin assembly. Taken together, our data demonstrates that FAK is required, but not sufficient for HGF-independent branching tubulogenesis in MDCK cells.  相似文献   

12.
The receptor tyrosine kinase DDR1 has been implicated in multiple human cancers and fibrosis and is targeted by the leukemia drug Gleevec. This suggests that DDR1 might be a new therapeutic target. However, further insight into the DDR1 signaling pathway is required in order to support its further development. Here, we investigated DDR1 proximal signaling by the analysis of protein-protein interactions using proteomic approaches. All known interactors of DDR1 were identified and localized to specific phosphotyrosine residues on the receptor. In addition, we identified numerous signaling proteins as new putative phosphotyrosine mediated interactors including RasGAP, SHIP1, SHIP2, STATs, PI3K and the SRC family kinases. Most of the new proteins contain SH2 and PTB domains and for all interactors we could directly point the site of interaction to specific phosphotyrosine residues on the receptor. The identified proteins have roles in the early steps of the signaling cascade, propagating the signal from the DDR1 receptor into the cell. The map of phosphotyrosine mediated interactors of DDR1 created in this study will serve as a starting point for functional investigations which will enhance our knowledge on the role of the DDR1 receptor in health and disease. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

13.
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and transmits signals from various collagens in epithelial cells. However, how DDR1–dependent signaling is regulated has not been understood. Here we report that collagen binding induces ADAM10-dependent ectodomain shedding of DDR1. DDR1 shedding is not a result of an activation of its signaling pathway, since DDR1 mutants defective in signaling were shed in an efficient manner. DDR1 and ADAM10 were found to be in a complex on the cell surface, but shedding did not occur unless collagen bound to DDR1. Using a shedding-resistant DDR1 mutant, we found that ADAM10-dependent DDR1 shedding regulates the half-life of collagen-induced phosphorylation of the receptor. Our data also revealed that ADAM10 plays an important role in regulating DDR1-mediated cell adhesion to achieve efficient cell migration on collagen matrices.  相似文献   

14.
Discoidin domain receptor (DDR) is a cell-surface receptor tyrosine kinase activated by the binding of its discoidin (DS) domain to fibrillar collagen. Here, we have determined the NMR structure of the DS domain in DDR2 (DDR2-DS domain), and identified the binding site to fibrillar collagen by transferred cross-saturation experiments. The DDR2-DS domain structure adopts a distorted jellyroll fold, consisting of eight beta-strands. The collagen-binding site is formed at the interloop trench, consisting of charged residues surrounded by hydrophobic residues. The surface profile of the collagen-binding site suggests that the DDR2-DS domain recognizes specific sites on fibrillar collagen. This study provides a molecular basis for the collagen-binding mode of the DDR2-DS domain.  相似文献   

15.
The discoidin domain receptors (DDRs) are collagen binding receptor tyrosine kinases that play important roles in cell migration, invasion and adhesion. Crosstalk between growth factor signaling and components of the extracellular matrix are drivers of cellular function but the integrated signaling networks downstream of such crosstalk events have not been extensively characterized. In this report, we have employed mass spectrometry-based quantitative phosphotyrosine analysis to identify crosstalk between DDR2 and the insulin receptor. Our phosphoproteomic analysis reveals a cluster of phosphorylation sites in which collagen and insulin cooperate to enhance phosphotyrosine levels. Importantly, Y740 on the DDR2 catalytic loop was found in this cluster indicating that insulin acts to promote collagen I signaling by increasing the activity of DDR2. Furthermore, we identify two additional migration associated proteins that are candidate substrates downstream of DDR2 activation. Our data suggests that insulin promotes collagen I signaling through the upregulation of DDR2 phosphorylation which may have important consequences in DDR2 function in health and disease.  相似文献   

16.
Fibroblasts are heterogeneous mesenchymal cells that play important roles in the production and maintenance of extracellular matrix. Although their heterogeneity is recognized, progenitor progeny relationships among fibroblasts and the factors that control fibroblast differentiation are poorly defined. The current study was designed to develop a reliable method that would permit in vitro differentiation of fibroblast-like cells from human and murine embryonic stem cells (ESCs). Undifferentiated ESCs were differentiated into embryoid bodies (EBs) with differentiation media. EBs were then cast into type I collagen gels and cultured for 21?d with basal media. The spindle-shaped cells that subsequently grew from the EBs were released from the gels and subsequently cultured as monolayers in basal media supplemented with serum. Differentiated cells showed a characteristic spindle-shaped morphology and had ultrastructural features consistent with fibroblasts. Immunocytochemistry showed positive staining for vimentin and alpha-smooth muscle actin but was negative for stage-specific embryonic antigens and cytokeratins. Assays of fibroblast function, including proliferation, chemotaxis, and contraction of collagen gels demonstrated that the differentiated cells, derived from both human and murine ESCs, responded to transforming growth factor-β1 and prostaglandin E(2) as would be expected of fibroblasts, functions not expected of endothelial or epithelial cells. The current study demonstrates that cells with the morphologic and functional features of fibroblasts can be reliably derived from human and murine ESCs. This methodology provides a means to investigate and define the mechanisms that regulate fibroblast differentiation.  相似文献   

17.
Although it is well established that epidermal growth factor receptors (EGFRs) are asymmetrically expressed at the basolateral plasma membrane in polarized epithelial cells, how this process is regulated is not known. The purpose of this study was to address the mechanism of directed EGFR basolateral sorting using the Madin-Darby canine kidney (MDCK) cell model. The first set of experiments established sorting patterns for endogenous canine EGFRs. The polarity of the canine EGFR was not quantitatively affected by differences in electrical resistance exhibited by the MDCK I and MDCK II cell strains. In both cases, greater than 90% of total surface EGFRs was localized to the basolateral surface. Canine EGFRs sort directly to the basolateral membrane from the trans-Golgi network with a halftime of approximately 45 min and have an approximate t1/2 of 12.5 h once reaching the basolateral surface. Human holoreceptors expressed in stably transfected MDCK cells also localize to the basolateral membrane with similar efficiency. To identify EGFR sequences necessary for basolateral sorting, MDCK cells were transfected with cDNAs coding for cytoplasmically truncated human receptor proteins. Human EGFRs truncated at Arg-651 were localized predominantly at the apical surface of filter-grown cells, whereas receptors truncated at Leu-723 were predominantly basolateral. These results suggest that the cytoplasmic juxtamembrane domain contains a positive basolateral sorting determinant. Moreover, the EGFR ectodomain or transmembrane domain may possess a cryptic sequence that specifically interacts with the apical sorting machinery once the dominant basolateral sorting signal is removed. Further elucidation of the precise loacation of these signals will enhance our basic understanding of regulated plasma membrane sorting, as well as the functional consequences of inappropriate EGFR expression associated with certain pathophysiologic and malignant states. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is highly expressed in breast carcinoma cells. Upon binding to collagen, DDR1 undergoes autophosphorylation followed by limited proteolysis to generate a tyrosine phosphorylated C-terminal fragment (CTF). Although it was postulated that this fragment is formed as a result of shedding of the N-terminal ectodomain, collagen-dependent release of the DDR1 extracellular domain has not been demonstrated. We now report that, in conjunction with CTF formation, collagen type I stimulates concentration-dependent, saturable shedding of the DDR1 ectodomain from two carcinoma cell lines, and from transfected cells. In contrast, collagen did not promote cleavage of other transmembrane proteins including the amyloid precursor protein (APP), ErbB2, and E-cadherin. Collagen-dependent tyrosine phosphorylation and proteolysis of DDR1 in carcinoma cells were reduced by a pharmacologic Src inhibitor. Moreover, expression of a dominant negative Src mutant protein in human embryonic kidney cells inhibited collagen-dependent phosphorylation and shedding of co-transfected DDR1. The hydroxamate-based metalloproteinase inhibitor TAPI-1 (tumor necrosis factor-alpha protease inhibitor-1), and tissue inhibitor of metalloproteinase (TIMP)-3, also blocked collagen-evoked DDR1 shedding, but did not reduce levels of the phosphorylated CTF. Neither shedding nor CTF formation were affected by the gamma-secretase inhibitor, L-685,458. The results demonstrate that collagen-evoked ectodomain cleavage of DDR1 is mediated in part by Src-dependent activation or recruitment of a matrix- or disintegrin metalloproteinase, and that CTF formation can occur independently of ectodomain shedding. Delayed shedding of the DDR1 ectodomain may represent a mechanism that limits DDR1-dependent cell adhesion and migration on collagen matrices.  相似文献   

19.
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase whose ligand is collagen. Recently, we have reported the association of DDR1 in the cytokine production of human leukocytes in in vitro and in vivo expression in idiopathic pulmonary fibrosis. However, its role in in vivo inflammation has not been fully elucidated. Small interference RNA (siRNA) can induce specific suppression of in vitro and in vivo gene expression. In this study, using a bleomycin-induced pulmonary fibrosis mouse model, we administered siRNA against DDR1 transnasally and evaluated histological changes, cytokine expression, and signaling molecule activation in the lungs. Histologically, siRNA against DDR1 successfully reduced in vivo DDR1 expression and attenuated bleomycin-induced infiltration of inflammatory cells. Furthermore, it significantly reduced inflammatory cell counts and concentrations of cytokines such as MCP-1, MIP-1alpha, and MIP-2 in bronchoalveolar lavage fluid. Subsequently, bleomycin-induced up-regulation of TGF-beta in bronchoalveolar lavage fluid was significantly inhibited, and collagen deposition in the lungs was reduced. Furthermore, siRNA against DDR1 significantly inhibited bleomycin-induced P38 MAPK activation in the lungs. Considered together, we propose that DDR1 contributes to the development of bleomycin-induced pulmonary inflammation and fibrosis.  相似文献   

20.
Normal epithelial branching morphogenesis in the absence of collagen I   总被引:6,自引:0,他引:6  
Interstitial collagens are thought to mediate epithelial-mesenchymal interactions during organogenesis. We have used the collagen I-deficient mouse mutant Mov13 to directly investigate the role of this major representative of the interstitial collagens in epithelial branching morphogenesis. Since homozygous embryos die at midgestation, we have studied the development of organ rudiments from Mov13 homozygous (i.e., collagen I-deficient), heterozygous, and wild-type embryos in culture. Development of all explants, including lung, kidney, salivary glands, pancreas, and skin, was normal by light and electron microscopic criteria and was independent of the genotype of the donor embryo. Metabolic labeling and immune staining verified the complete absence of collagen I in homozygous explants while revealing substantial production of collagens III and V in explants of all three genotypes. These results indicate either that collagen I has no role in the morphogenesis of these organs, or that its function is shared, or can be substituted for, by other fibrillar collagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号