首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To compare the effects of 8 weeks of high-resistance circuit (HRC) training (3-6 sets of 6 exercises, 6 repetition maximum [RM], ~35-second interset recovery) and traditional strength (TS) training (3-6 sets of 6 exercises, 6RM, 3-minute interset recovery) on physical performance parameters and body composition, 33 healthy men were randomly assigned to HRC, TS, or a control group. Training consisted of weight lifting 3 times a week for 8 weeks. Before and after the training, 1RM strength on bench press and half squat exercises, bench press peak power output, and body composition (dual x-ray absorptiometry ) were determined. Shuttle run and 30-second Wingate tests were also completed. Upper limb (UL) and lower limb 1RM increased equally after both TS and HRC training. The UL peak power at various loads was significantly higher at posttraining for both groups (p ≤ 0.01). Shuttle-run performance was significantly better after both HRC and TS training, however peak cycling power increased only in TS training (p ≤ 0.05). Significant decreases were found in % body fat in the HRC group only; HRC and TS training both resulted in an increased lean but not bone mass. The HRC training was as effective as TS for improving weight lifting 1RM and peak power, shuttle-run performance and lean mass. Thus, HRC training promoted a similar strength-mass adaptation as traditional training while using a shorter training session duration.  相似文献   

2.
We investigated the effect of low-intensity resistance exercise training on muscular size and strength where the interset rest period was shortened so as to reduce the metabolite clearance. Female subjects (aged 45.4 +/- 9.5 years, n = 10) performed bilateral knee extension exercises in a seated position on an isotonic leg extension machine. The exercise sessions consisted of 3 sets of exercise at a mean intensity of approximately 50% 1RM with an interset rest period of 30 seconds and was performed twice a week for a period of 12 weeks. The strength and the cross-sectional area (CSA) of the knee extensors and flexors were examined with an isokinetic dynamometer and magnetic resonance imaging (MRI), respectively. The CSAs of the knee extensors and flexors increased by 7.1 +/- 1.6% (p < 0.01, Wilcoxon signed rank test) and 2.5 +/- 1.4% (not significant), respectively. Isometric and isokinetic strengths increased significantly (p < 0.01) at all velocities examined, whereas no significant change was observed in those of knee flexors. These results indicate that a low-intensity resistance exercise with a short interset rest period is substantially effective in inducing muscular hypertrophy and concomitant increase in strength.  相似文献   

3.
Acute and long-term hormonal and neuromuscular adaptations to hypertrophic strength training were studied in 13 recreationally strength-trained men. The experimental design comprised a 6-month hypertrophic strength-training period including 2 separate 3-month training periods with the crossover design, a training protocol of short rest (SR, 2 minutes) as compared with long rest (LR, 5 minutes) between the sets. Basal hormonal concentrations of serum total testosterone (T), free testosterone (FT), and cortisol (C), maximal isometric strength of the leg extensors, right leg 1 repetition maximum (1RM), dietary analysis, and muscle cross-sectional area (CSA) of the quadriceps femoris by magnetic resonance imaging (MRI) were measured at months 0, 3, and 6. The 2 hypertrophic training protocols used in training for the leg extensors (leg presses and squats with 10RM sets) were also examined in the laboratory conditions at months 0, 3, and 6. The exercise protocols were similar with regard to the total volume of work (loads x sets x reps), but differed with regard to the intensity and the length of rest between the sets (higher intensity and longer rest of 5 minutes vs. somewhat lower intensity but shorter rest of 2 minutes). Before and immediately after the protocols, maximal isometric force and electromyographic (EMG) activity of the leg extensors were measured and blood samples were drawn for determination of serum T, FT, C, and growth hormone (GH) concentrations and blood lactate. Both protocols before the experimental training period (month 0) led to large acute increases (p < 0.05-0.001) in serum T, FT, C , and GH concentrations, as well as to large acute decreases (p < 0.05-0.001) in maximal isometric force and EMG activity. However, no significant differences were observed between the protocols. Significant increases of 7% in maximal isometric force, 16% in the right leg 1RM, and 4% in the muscle CSA of the quadriceps femoris were observed during the 6-month strength-training period. However, both 3-month training periods performed with either the longer or the shorter rest periods between the sets resulted in similar gains in muscle mass and strength. No statistically significant changes were observed in basal hormone concentrations or in the profiles of acute hormonal responses during the entire 6-month experimental training period. The present study indicated that, within typical hypertrophic strength-training protocols used in the present study, the length of the recovery times between the sets (2 vs. 5 minutes) did not have an influence on the magnitude of acute hormonal and neuromuscular responses or long-term training adaptations in muscle strength and mass in previously strength-trained men.  相似文献   

4.
Acute and long-term effects of resistance-training regimens with varied combinations of high- and low-intensity exercises were studied. Acute changes in the serum growth hormone (GH) concentration were initially measured after 3 types of regimens for knee extension exercise: a medium intensity (approximately 10 repetition maximum [RM]) short interset rest period (30 s) with progressively decreasing load ("hypertrophy type"); 5 sets of a high-intensity (90% of 1RM) and low-repetition exercise ("strength type"); and a single set of low-intensity and high-repetition exercise added immediately after the strength-type regimen ("combi-type"). Postexercise increases in serum GH concentration showed a significant regimen dependence: hypertrophy-type > combi-type > strength-type (p < 0.05, n = 8). Next, the long-term effects of periodized training protocols with the above regimens on muscular function were investigated. Male subjects (n = 16) were assigned to either hypertrophy/combi (HC) or hypertrophy/ strength (HS) groups and performed leg press and extension exercises twice a week for 10 weeks. During the first 6 weeks, both groups used the hypertrophy-type regimen to gain muscular size. During the subsequent 4 weeks, HC and HS groups performed combi-type and strength-type regimens, respectively. Muscular strength, endurance, and cross sectional area (CSA) were examined after 2, 6, and 10 weeks. After the initial 6 weeks, no significant difference was seen in the percentage changes of all variables between the groups. After the subsequent 4 weeks, however, 1RM of leg press, maximal isokinetic strength, and muscular endurance of leg extension showed significantly (p < 0.05) larger increases in the HC group than in the HS group. In addition, increases in CSA after this period also tended to be larger in the HC group than in the HS group (p = 0.08). The results suggest that a combination of high- and low-intensity regimens is effective for optimizing the strength adaptation of muscle in a periodized training program.  相似文献   

5.
It may be possible to enhance set and session kinematics and kinetics by engaging in low-intensity aerobic exercise during the interset rest period. The purpose of this study therefore was to quantify the change in session kinematics and kinetics of 35% 1RM and 70% 1RM loading schemes equated by volume, when aerobic exercise or passive rest was undertaken between sets. Twelve male student athletes were recruited for this study. Squat average force, peak force, average power, peak power, total work, and total impulse were quantified using a force plate and linear transducer. Blood lactate samples were taken before set 1, after set 1, after set 2, and after the last set performed. No significant (p < 0.05) differences (0.37-9.24%) were found in any of the kinematic and kinetic variables of interset after active or passive interset rest periods. Significant increases (64-76%) in blood lactate occurred from the inception of exercise to completion, for both the heavy and light loading schemes. However, no significant differences in lactate accumulation were noted, whether active or passive recovery was undertaken in the interest rest period. It was concluded that active recovery in the form of low-intensity cycling offered no additional benefits in terms of lactate clearance and enhancement of set and session kinematics and kinetics.  相似文献   

6.
The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p < 0.001), with CRT showing 50% greater improvement in hamstring strength than PT (p < 0.01). Plyometric training increased maximum CMJ height (10%) and maximal power (Pmax; 9%) during CMJ (p < 0.01) and Pmax in ballistic leg press (17%) (p < 0.001). This was far greater than for CRT (p < 0.01), which only increased Pmax during the ballistic leg press (4%) (p < 0.05). Quadriceps, hamstring, and adductor whole-muscle cross-sectional area (CSA) increased equally (7-10%) with CRT and PT (p < 0.001). For fiber CSA analysis, some of the biopsies had to be omitted. Type I and IIa fiber CSA increased in CRT (n = 4) by 32 and 49%, respectively (p < 0.05), whereas no significant changes occurred for PT (n = 5). Myosin heavy-chain IIX content decreased from 11 to 6%, with no difference between CRT and PT. In conclusion, gross muscle size increased both by PT and CRT, whereas only CRT seemed to increase muscle fiber CSA. Gains in maximal muscle strength were essentially similar between groups, whereas muscle power increased almost exclusively with PT training.  相似文献   

7.
This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.  相似文献   

8.
Individuals with an intellectual disability (ID) have higher rates of obesity, lower rates of physical activity, cardiorespiratory fitness, and muscular endurance than do typically developed individuals (TDI) and are twice as likely to develop chronic disease, living half as long as TDIs do. The purpose of this study was to examine the improvements in physical capacity and functional ability in Special Olympic Athletes (SOAs) aged 19-22 years after participating in a functional training (FT) program and compare these scores with those of the SOAs in a resistance weight training (WT) program. Twenty SOAs (13 men, 7 women with mild to moderate ID) participated in a 1-hour FT program, twice a week, for 10 weeks, compared with 22 same-aged SOAs (14 men, 8 women) participating in a 1-hour WT program (2× week for 8 weeks). Prefitness and postfitness tests consisting of heart rate (HR) for the 3-minute step test, static plank, body weight squats, static bar hang, and knee push-ups were conducted. Two-tailed, paired sample t-tests (p < 0.05) were used to evaluate the differences in the FT group. Change scores were used to compare FTG with the WT group. The HR decreased by 31.8 b·min?1 pre-post in the FTG (p < 0.001). Static plank duration improved by 22.4 seconds in the FTG (p = 0.016); static plank change scores improved (p = 0.037) for the FTG (26.5 ± 32.1 seconds compared with that for the WT group (4.6 ± 22 seconds). Height and weight values were unchanged in both the groups. The results of this study demonstrate the value of FT programs for this population, because weight equipment is not always available in many settings.  相似文献   

9.
Unilateral and bilateral lower-body heavy resistance exercises (HREs) are used for strength training. Little research has examined whether muscle activation and testosterone (TES) responses differ between these exercises. Our purpose was to compare the effects of unilateral and bilateral lower-body HRE on muscle activity using surface electromyography (sEMG) and TES concentrations. Ten resistance-trained, college-aged male athletes (football, track and field) completed 5 testing sessions in which bilateral (back squat [BS]) and unilateral (pitcher squat [PS]) exercises were performed using a counterbalanced design. Sessions 1 and 2 determined estimated maximum strength (10 repetition maximum [10RM]) in the BS and PS. During testing session 3, muscle activation (sEMG) was measured in the right vastus lateralis, biceps femoris, gluteus maximus, and erector spinae (ES) during both BS and PS (stance leg) exercises. In sessions 4 and 5, total TES concentrations (nanomoles per liter) were measured via blood draws at baseline (preexercise), 0, 5, 10, 15, and 30 minutes postexercise after 4 sets of 10 repetitions at the 10RM. Separate repeated-measures analyses of variance examined differences in sEMG and TES between BS and PS (p < 0.05). The sEMG amplitudes were similar (p = 0.80) for BS (0.22 ± 0.06 mV) and PS (0.20 ± 0.07 mV). The TES responses were also similar (p = 0.15) between BS (21.8 ± 6.9 nmol·L(-1)) and PS (26.2 ± 10.1 nmol·L(-1)). The similar lower limb and back sEMG and TES responses may indicate that the neuromuscular and hormonal demands were comparable for both the BS and PS exercises despite the absolute work being less in the PS. The PS exercise may be an effective method for including unilateral exercise into lower-body resistance training when designing training programs for ground-based activities.  相似文献   

10.
The purpose of this study was to examine the effects of a 6-week, periodized squat training program, with or without whole-body low-frequency vibration (WBLFV), applied before and between sets to 1RM squat strength and body composition. Thirty men aged between 20 and 30 years with at least 6 months of recreational weight training experience completed the study. Subjects were randomly assigned to either 1 of 2 training groups or to an active control group (CON). Group 1 (CON; n = 6) did not participate in the training protocol but participated only in testing sessions. Group 2 (SQTV, n = 13) performed 6 weeks of squat training while receiving WBLFV (50 Hz), before, and in-between sets. The third group (SQT, n = 11) performed 6 weeks of squat training only. Subjects completed 12 workouts with variable loads (55-90% one repetition maximum [1RM]) and sets (), performing squats twice weekly separated by 72 hours. The RM measures were recorded on weeks (W) 1, 3, and 7. During the second workout of a week, the load was reduced by 10-15%, with "speed squats" performed during the final 3 weeks. Rest periods in between sets were set at 240 seconds. The WBLFV was applied while subjects stood on a WBLFV platform holding an isometric quarter squat position (knee angle 135 ± 5°). Initially, WBLFV was applied at 50 Hz for 30 seconds at low amplitude (peak-peak 2-4 mm). A rest period of 180 seconds followed WBLFV exposure before the first set of squats. The WBLFV was then applied intermittently (3 × 10 seconds) at 50 Hz, high amplitude (peak-peak, 4-6 mm) at time points, 60, 120, and 180 seconds into the 240-second rest period. Total body dual x-ray absorptiometry scans were performed at W0 (week before training) and W7 (week after training). Measures recorded included total body mass (kg), total body lean mass (TLBM, kg), trunk lean mass (kg), leg lean mass (kg), total body fat percentage, trunk fat percentage, and leg fat percentage (LF%). Repeated-measures analysis of variance and analysis of covariance revealed 1RM increased significantly between W1-W3, W3-W7, and W1-W7 for both experimental groups but not for control (p = 0.001, effect size [ES] = 0.237, 1 - β = 0.947). No significant differences were seen for %Δ (p > 0.05). Significant group by trial and group effects were seen for TLBM, SQTV > CON at W7 (p = 0.044). A significant main effect for time was seen for LF%, W0 vs. W7 (p = 0.047). No other significant differences were seen (p > 0.05). "Practical trends" were seen favoring "short-term" neuromuscular adaptations for the SQTV group during the first 3 weeks (p = 0.10, ES = 0.157, 1 - β = 0.443, mean diff; SQTV week 3 4.72 kg > CON and 2.53 kg > SQT). Differences in motor unit activation patterns, hypertrophic responses, and dietary intake during the training period could account for the trends seen.  相似文献   

11.
Circuit training effectively reduces the time devoted to strength training while allowing an adequate training volume to be achieved. Nonetheless, circuit training has traditionally been performed using relatively low loads for a relatively high number of repetitions, which is not conducive to maximal muscle size and strength gain. This investigation compared physical performance parameters and cardiovascular load during heavy-resistance circuit (HRC) training to the responses during a traditional, passive rest strength training set (TS). Ten healthy subjects (age, 26 +/- 1.6 years; weight, 80.2 +/- 8.78 kg) with strength training experience volunteered for the study. Testing was performed once weekly for 3 weeks. On day 1, subjects were familiarized with the test and training exercises. On the subsequent 2 test days, subjects performed 1 of 2 strength training programs: HRC (5 sets x (bench press + leg extensions + ankle extensions); 35-second interset rest; 6 repetition maximum [6RM] loads) or TS (5 sets x bench press; 3-minute interset rest, 6RM loads). The data confirm that the maximum and average bar velocity and power and the number of repetitions performed of the bench press in the 2 conditions was the same; however, the average heart rate was significantly greater in the HRC compared to the TS condition (HRC = 129 +/- 15.6 beats x min(-1), approximately 71% maximum heart rate (HRmax), TS = 113 +/- 13.1 beats x min(-1), approximately 62% HRmax; P < 0.05). Thus, HRC sets are quantitatively similar to traditional strength training sets, but the cardiovascular load is substantially greater. HRC may be an effective training strategy for the promotion of both strength and cardiovascular adaptations.  相似文献   

12.
The purpose of this study was to examine the effects of a drink containing creatine, amino acids, and protein vs. a carbohydrate placebo on body composition, strength, muscular endurance, and anaerobic performance before and after 10 weeks of resistance training. Fifty-one men (mean +/- SD; age: 21.8 +/- 2.9 years) were randomly assigned to either the test drink (TEST; n = 23) or the placebo (PLAC; n = 28) and performed two 30-second Wingate Anaerobic Tests for determination of peak power (PP) and mean power (MP), were weighed underwater for percent body fat (%fat) and fat-free mass (FFM), and were tested for 1 repetition maximum (1RM) dynamic constant external resistance strength and muscular endurance (END; number of repetitions performed with 80% of 1RM) on the bilateral leg extension (LE) and free-weight bench press (BP) exercises. The testing was conducted before (PRE) and after (POST) 10 weeks of resistance training (3 sets of 10 repetitions with 80% of the subject's 1RM performed 3 times per week) on the LE and BP exercises. Body weight, FFM, LE 1RM, LE END, BP 1RM, and BP END increased (p < 0.05), whereas %fat decreased (p < 0.05) from PRE to POST for both the TEST and PLAC groups. Peak power and MP, however, increased for the TEST group, but not for the PLAC group. These results suggested that the creatine-, amino acid-, and protein-containing drink provided no additional benefits when compared with carbohydrates alone for eliciting changes in body composition, strength, and muscular endurance after a 10-week resistance training period. The TEST drink was, however, more effective than carbohydrates alone for improving anaerobic power production.  相似文献   

13.
Our previous study showed that relatively low-intensity (approximately 50% one-repetition maximum [1RM]) resistance training (knee extension) with slow movement and tonic force generation (LST) caused as significant an increase in muscular size and strength as high-intensity (approximately 80% 1RM) resistance training with normal speed (HN). However, that study examined only local effects of one type of exercise (knee extension) on knee extensor muscles. The present study was performed to examine whether a whole-body LST resistance training regimen is as effective on muscular hypertrophy and strength gain as HN resistance training. Thirty-six healthy young men without experience of regular resistance training were assigned into three groups (each n = 12) and performed whole-body resistance training regimens comprising five types of exercise (vertical squat, chest press, latissimus dorsi pull-down, abdominal bend, and back extension: three sets each) with LST (approximately 55-60% 1RM, 3 seconds for eccentric and concentric actions, and no relaxing phase); HN (approximately 80-90% 1RM, 1 second for concentric and eccentric actions, 1 second for relaxing); and a sedentary control group (CON). The mean repetition maximum was eight-repetition maximum in LST and HN. The training session was performed twice a week for 13 weeks. The LST training caused significant (p < 0.05) increases in whole-body muscle thickness (6.8 +/- 3.4% in a sum of six sites) and 1RM strength (33.0 +/- 8.8% in a sum of five exercises) comparable with those induced by HN training (9.1 +/- 4.2%, 41.2 +/- 7.6% in each measurement item). There were no such changes in the CON group. The results suggest that a whole-body LST resistance training regimen is as effective for muscular hypertrophy and strength gain as HN resistance training.  相似文献   

14.
The objective of this study was to examine the effects of rest interval length on perceived exertion and during 3 sets of 10 inertial knee extension repetitions. Thirty healthy men (n = 15) and women (n = 15) volunteers were randomly assigned to 1 of 3 groups (1-, 2-, or 3-minute rest interval length) following the establishment of each subject's 1 repetition maximum (1RM) for inertial knee extension exercise. Subjects in each group performed 3 sets of 10 repetitions at 70% of a theoretical 10RM (based on each subject's 1RM), with a 1-, 2-, or 3-minute rest interval between each set. Perceived exertion was recorded, via the Borg category-ratio scale, from each subject after each repetition of each set. The results demonstrated no significant rest interval length effect on perceived exertion across the 3 sets of 10 repetitions. The results revealed a significantly higher perceived exertion value following the first repetition in set 3 as compared to sets 2 and 1 in all groups. The increase in perceived exertion within each set, as described by the slope, was found to be significantly lowest in set 1, as compared to sets 2 and 3. The major findings of this study demonstrate that perceived exertion significantly increases in a similar manner across 3 sets of 10 knee extension repetitions, despite rest interval lengths of 1-3 minutes.  相似文献   

15.
To examine the effects of different rest intervals on the repeatability of 1 repetition maximum (1RM) efforts in the free-weight back squat exercise, 17 weight-trained men served as subjects (mean age 22.0 years). One repetition maximum was tested on each of the first 2 days of testing to establish a stable baseline (1RM = 184.9 kg). Each of the next 3 sessions involved performing 2 1RM back squats, with the rest interval between attempted lifts being either 1, 3, or 5 minutes, assigned in a counterbalanced fashion. For the 1-minute rest interval, 13 of 17 subjects successfully completed the second lift; for the 3-minute rest interval, 16 of 17 were successful; and for the 5-minute rest interval, 15 of 17 were successful. Cochran Q analysis determined no significant difference (p > 0.05) in the ability to repeat a successful maximal-effort back squat when different rest intervals were used. These findings are consistent with the literature for the bench-press exercise and indicate that 1-minute rest intervals are sufficient for recovery between attempted lifts during 1RM testing or training for the free-weight back squat when involving lifters of this caliber.  相似文献   

16.
The purpose of the present study was to determine the effectiveness of a 24-week aquatic training (AT) program, which included both aerobic and resistance components, on muscle strength (isometric and dynamic), flexibility, and functional mobility in healthy women over 60 years of age. Twenty-two subjects were assigned randomly to either an AT (n = 12) or a control (C, n = 10) group. Volunteers participated in a supervised shallow-water exercise program for 60 minutes a day, 3 days a week; the exercise program consisted of a 10-minute warm-up and stretching, 25 minutes of endurance-type exercise (dancing) at 80% of heart rate (HR)(max), 20 minutes of upper- and lower-body resistance exercises with specialized water-resistance equipment, and a 5-minute cool down. Maximal isometric torque of knee extensors (KEXT) and knee flexors (KFLEX) were evaluated by a Cybex Norm dynamometer, grip strength (HGR) was evaluated using a Jamar hydraulic dynamometer, and dynamic strength was evaluated via the 3 repetition maximum (3RM) test for chest press, knee extension, lat pull down, and leg press. Jumping performance was evaluated using the squat jump (SJ), functional mobility with the timed up-and-go (TUG) test, and trunk flexion with the sit-and-reach test. Body composition was measured using the bioelectrical impedance method. The AT induced significant improvements in KEXT (10.5%) and KFLEX (13.4%) peak torque, HGR strength (13%), 3RM (25.7-29.4%), SJ (24.6%), sit-and-reach (11.6%), and TUG (19.8%) performance. The AT group demonstrated a significant increase in lean body mass (3.4%). No significant changes in these variables were observed in the C group. The results indicate that AT, with both aerobic and resistance components, is an alternative training method for improving neuromuscular and functional fitness performance in healthy elderly women.  相似文献   

17.
The purpose of this study was to determine the effect of a weight-bearing free weight resistance training program alone on knee flexion, hip flexion, and knee valgus during unilateral and bilateral drop jump tasks. Twenty-nine young adult females with previous athletic experience were randomly divided into a control (n = 16) and a resistance training (n = 13) groups. The resistance training group completed 8 weeks of lower extremity, weight-bearing exercises using free weights, whereas the control group did not train. A pre- and posttest was conducted to measure knee valgus, knee flexion, and hip flexion during unilateral (30 cm) and bilateral (60 cm) vertical drop jumps for maximum height. Joint angles were determined using 3-dimensional electromagnetic tracking sensors (MotionMonitor; Innovative Sports Training, Inc., Chicago, IL, USA). Initial training intensity for the bilateral squat was 50% of the subject's 1 repetition maximum (RM), which increased 5% each week to 85% during the final week. Sets and repetitions ranged from 2 to 4 and from 4 to 12, respectively. The training loads for all other exercises (lunge, step-up, unilateral squat, and Romanian deadlift) increased from 15RM to 6RM from the initial to the final week. A repeated measures analysis of variance was used to determine differences in the hip and knee joint angles. No significant differences for knee valgus and hip flexion measures were found between the groups after training; however, knee flexion angle significantly increased in the training group from the pretest (77.2 ± 4.1°) to posttest (83.2 ± 3.7°) during the bilateral drop jump. No significant changes occurred during the unilateral drop jump. Bilateral measures for knee flexion, hip flexion, and knee valgus were significantly (p < 0.05) greater than the unilateral measures during the drop jump task, which indicate an increased risk for anterior cruciate ligament (ACL) injury during unilateral drop jumps. The data support that the strength and conditioning specialist can implement resistance training alone during a short-term training period to reduce the risk of ACL injury by increasing knee flexion during a bilateral drop jump task. Increased knee flexion angles after resistance training may indicate a reduced risk for knee injury from improved neuromuscular control, resulting in a softer landing.  相似文献   

18.
In this study, we assessed the influence of training intensity on strength retention and loss incurred during detraining in older adults. In a previous study, untrained seniors (age = 71.0 +/- 5.0; n = 61) were randomly divided into 3 exercise groups and 1 control group. Exercise groups trained 2 days per week for 18 weeks with equivalent volumes and acute program variables but intensities of 2 x 15 repetitions maximum (RM), 3 x 9RM, or 4 x 6RM. Thirty of the original training subjects (age 71.5 +/- 5.2 years) participated in a 20-week detraining period. A 1RM for 8 exercises was obtained pre- and posttraining and at 6 and 20 weeks of detraining. The total of 1RM for the 8 exercises served as the dependent variable. Analysis of variance procedures demonstrated significant increases in strength with training (44-51%; p < 0.05), but no group effect. All training groups demonstrated significant strength decreases at both 6 and 20 weeks of detraining independent of prior training intensity (all group average 4.5% at 6 weeks and 13.5% at 20 weeks; p < 0.04). However, total-body strength was significantly greater than pretraining values after the detraining period (all group average 82% at 6 weeks and 49% at 20 weeks; p < 0.001). The results suggest that when older adults participate in progressive resistance exercise for 18 weeks, then stop resistance training (i.e., detrain), strength losses occur at both 6 and 20 weeks of detraining independent of prior resistance training intensity. However, despite the strength losses, significant levels of strength are retained even after 20 weeks of detraining. The results have important implications for resistance-trained older adults who could undergo planned or unplanned training interruptions of up to 5 months.  相似文献   

19.
The present investigation attempted to determine whether resistance exercise intensity affects flexibility and strength performance in the elderly following a 6-month resistance training and detraining period. Fifty-eight healthy, inactive older men (65- 78 yrs) were randomly assigned to 1 of 4 groups: a control group (C, n = 10), a low-intensity resistance training group (LI, n = 14, 40% of 1 repetition maximum [1RM]), a moderate-intensity resistance training group (MI, n = 12, 60% of 1RM), or a high-intensity resistance training group (HI, n = 14, 80% of 1RM). Subjects in exercise groups followed a 3 days per week, whole-body (10 exercises, 3 sets per exercise) protocol for 24 weeks. Training was immediately followed by a 24-week detraining period. Strength (bench and leg press 1RM) and range of motion in trunk, elbow, knee, shoulder, and hip joints were measured at baseline and during training and detraining. Resistance training increased upper- (34% in LI, 48% in MI, and 75% in HI) and lower-body strength (38% in LI, 53% in MI, and 63% in HI) in an intensity-dependent manner. Flexibility demonstrated an intensity-dependent enhancement (3-12% in LI, 6-22% in MI, and 8-28% in HI). Detraining caused significant losses in strength (70-98% in LI, 44-50% in MI, and 27-29% in HI) and flexibility (90-110% in LI, 30-71% in MI, and 23-51% in HI) in an intensity-dependent manner. Results indicate that resistance training by itself improves flexibility in the aged. However, intensities greater than 60% of 1RM are more effective in producing flexibility gains, and strength improvement with resistance training is also intensity-dependent. Detraining seems to reverse training strength and flexibility gains in the elderly in an intensity-dependent manner.  相似文献   

20.
This study examined the salivary hormone and immune responses of elite female athletes to 3 different resistance exercise schemes. Fourteen female basketball players each performed an endurance scheme (ES-4 sets of 12 reps, 60% of 1 repetition maximum (1RM) load, 1-minute rest periods), a strength-hypertrophy scheme (SHS-1 set of 5RM, 1 set of 4RM, 1 set of 3RM, 1 set of 2RM, and 1set of 1RM with 3-minute rest periods, followed by 3 sets of 10RM with 2-minute rest periods) and a power scheme (PS-3 sets of 10 reps, 50% 1RM load, 3-minute rest periods) using the same exercises (bench press, squat, and biceps curl). Saliva samples were collected at 07:30 hours, pre-exercise (Pre) at 09:30 hours, postexercise (Post), and at 17:30 hours. Matching samples were also taken on a nonexercising control day. The samples were analyzed for testosterone, cortisol (C), and immunoglobulin A concentrations. The total volume of load lifted differed among the 3 schemes (SHS > ES > PS, p < 0.05). Postexercise C concentrations increased after all schemes, compared to control values (p < 0.05). In the SHS, the postexercise C response was also greater than pre-exercise data (p < 0.05). The current findings confirm that high-volume resistance exercise schemes can stimulate greater C secretion because of higher metabolic demand. In terms of practical applications, acute changes in C may be used to evaluate the metabolic demands of different resistance exercise schemes, or as a tool for monitoring training strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号