共查询到20条相似文献,搜索用时 15 毫秒
1.
Endrin is persistent organic pollutants that contaminate soil in many parts of the world. In this study, endrin was used as the substrate for a degradation experiment with the white rot fungi of the genus Phlebia. The results of tolerance test showed that the tolerance level of Phlebia acanthocystis and Phlebia brevispora to endrin was higher than that of other fungi, and the tolerance coefficient of both strains to 1.0 mg/L endrin exceeded 0.9 in solid PDA medium. P. acanthocystis and P. brevispora could degrade endrin efficiently in pure culture, especially P. acanthocystis had the highest degradability of more than 80% after 20 d incubation. Compared with low-nitrogen medium, PDB medium is more suitable for the biodegradability of two fungi. Several hydroxylated products such as 8-hydroxyendrin and two monohydroxyendrin were detected, indicating that endrin was initially branched to different monohydroxylated products in fungal degradation. Moreover, a carboxylic acid product was obtained from P. acanthocystis culture, suggesting that the carboxylation reaction occurred in bioconversion of endrin. The fungal cytochrome P450 enzymes play significant role in the in the initial hydroxylation process on endrin degradation. This is the first report that endrin is converted to hydroxylated and carboxylated metabolites by microorganisms. 相似文献
2.
Journal of Microbiology - The widespread use of the organochlorine insecticide lindane in the world has caused serious environmental problems. The main purpose of this paper is to investigate the... 相似文献
3.
Pisareva E Savov V Kujumdzieva A 《Zeitschrift für Naturforschung. C, Journal of biosciences》2005,60(1-2):116-120
Citrinin is a mycotoxin, which is produced by fungi belonging to the genus Monascus, known in biotechnology as producers of azaphilone pigments. The relation between biosynthesis of these secondary metabolites was investigated in different species of the genus Monascus in batch-culture at the following cultivation conditions: T = 28 degrees C, agitation 220 rpm, and a medium, which induce citrinin production, containing ethanol as a carbon source. The screening was carried out with 16 fungal strains and the biosynthesis of citrinin and pigments was monitored quantitatively at the standard conditions mentioned above. Some kinetic parameters of the process have been determined. The values of the growth yield coefficient Y(X/C) were between 0.32 and 0.57. The amount of the extracellular red and orange pigments at the end of cultivation varied for the different strains between 0.09 and 1.33 OU/ mg dry weight, and 0.15 and 0.96 OU/mg dry weight, respectively. The amount of the total pigments measured was between 0.16 and 3.6 OU/mg dry weight, and between 0.21 and 3.39 OU/mg dry weight. The determined ratio 500 nm/400 nm, characterizing the pigment production, ranged between 0.60 and 1.06. Twelve of the investigated strains produced citrinin and pigments, two of them produced only pigments. Two strains were not able to produce neither pigments nor citrinin. Thus, the biosynthesis of citrinin appeared to be strain-specific and does not correlate with the pigments' biosynthesis by the fungal strains belonging to the genus Monascus. 相似文献
4.
There is very limited information on the biotransformation of organochlorine pesticide chlordane by microorganisms, and no systematic study on the metabolic products and pathways for chlordane transformation by wood-rot fungi has been conducted. In this study, trans-chlordane was metabolized with the wood-rot fungi species Phlebia lindtneri, Phlebia brevispora and Phlebia aurea, which are capable of degrading polychlorinated dibenzo-p-dioxin and heptachlor epoxide. At the end of 42 days of incubation, over 50% of trans-chlordane was degraded by the fungal treatments in pure cultures. These fungi transformed trans-chlordane to at least eleven metabolites including a large amount of hydroxylated products such as 3-hydroxychlordane, chlordene chlorohydrin, heptachlor diol, monohydroxychlordene and dihydroxychlordene. P. lindtneri particularly can metabolize oxychlordane, a recalcitrant epoxide product of chlordane, into a hydroxylated product through substitution of chlorine atom by hydroxyl group. The present results suggest that hydroxylation reactions play an important role in the metabolism of trans-chlordane by these Phlebia species. Additionally, transformation of trans-chlordane and production of hydroxylated metabolites were efficiently inhibited by the addition of cytochrome P450 inhibitors, piperonyl butoxide and 1-aminobenzotriazole, demonstrating that fungal cytochrome P450 enzymes are involved in some steps of trans-chlordane metabolism, particularly in the hydroxylation process. 相似文献
5.
Six strains of white rot fungi, isolated from soil in Korea, were evaluated as to their ability to biodegrade the 4-ring polycyclic aromatic hydrocarbon pyrene. While growing in a complex fungal medium, Irpex lacteus, Trametes versicolor KR11W, and Phanerochaete chrysosporium mineralized 15.6, 12.7 and 7.0% of the added 0.84 nmol of radioactive pyrene, respectively. In these cultures, 33–46% of the added pyrene was converted to water-soluble polar metabolites, and 22–40% was incorporated into fungal biomass. Pleurotus ostreatus mineralized only 2.5% of the added pyrene, while T. versicolor KR65W and Microporus vernicipes failed to evolve 14CO2 from pyrene. The information obtained aids in strain selection for clean-up of polycyclic aromatic hydrocarbon contamination. 相似文献
6.
Degradation of anthracene by selected white rot fungi 总被引:5,自引:0,他引:5
Abstract Approximately 60% of the originally supplied anthracene (AC) was degraded in ligninolytic stationary cultures of selected white rot fungi within 21 days. All the white rot fungi tested oxidized AC to anthraquinone (AQ). Unlike Phanerochaete chrysosporium and strain Px, with Pleurotus ostreatus, Coriolopsis polyzona and Trametes versicolor , AQ did not accumulate in the cultures, indicating that AQ was degraded further and its degradation did not appear to be a rate-limiting step. However, P. ostreatus and C. polyzona failed to degrade AQ in the absence of AC. P. ostreatus, T. versicolor and strain Px did not produce lignin peroxidase (ligninase) (LIP) under the test conditions but oxidized AC to AQ suggesting that white rot fungi produce enzyme(s) other than LIP capable of oxidizing compounds with high ionization potential like AC. Moreover, in the case of Ph. chrysosporium and C. polyzona , AC degradation started earlier than the production of LIP. Veratryl alcohol (VA) seemed to be playing a role in AC oxidation catalyzed by LIP in Ph. chrysosporium . 相似文献
7.
8.
Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential 总被引:11,自引:0,他引:11
The capacity of nine species of white rot fungus from a variety of basidiomycete orders to degrade contrasting mono-aromatic pesticides was investigated. There was no relationship between degradation of the dye Poly R-478, a presumptive test for ligninolytic potential, and degradation of the highly available pesticides diuron, metalaxyl, atrazine or terbuthylazine in liquid culture. However, there were significant positive correlations between the rates of degradation of the different pesticides. Greatest degradation of all the pesticides was achieved by Coriolus versicolor, Hypholoma fasciculare and Stereum hirsutum. After 42 days, maximum degradation of diuron, atrazine and terbuthylazine was above 86%, but for metalaxyl less than 44%. When grown in the organic matrix of an on-farm "biobed" pesticide remediation system, relative degradation rates of the highly available pesticides by C. versicolor, H. fasciculare and S. hirsutum showed some differences to those in liquid culture. While H. fasciculare and C. versicolor were able to degrade about a third of the poorly available compound chlorpyrifos in biobed matrix after 42 days, S. hirsutum, which was the most effective degrader of the available pesticides, showed little capacity to degrade the compound. 相似文献
9.
10.
K J Chrapkowska 《Acta microbiologica Polonica》1984,33(2):137-145
Culture fluids obtained from submerged cultures of white, brown and gray wood rot fungi were assayed for the presence of cellulolytic activity complexes against the model substrated carboxymethylcellulose-Na and Standard Whatman cellulose and natural substrates, i.e. celluloses isolated from pine bark and sawdust. The cellulolytic activity of the examined fungal species was highly differentiated. The use of model and natural substrates allowed determination of the high substrate specificity of the cellulase complexes produced by the fungi. Not all the fungi were found to produce EC 3.2.1.4. endo-1, 4-beta-glucanase under the culture conditions employed. All the fungi were, however, able to produce a complex of EC 3.2.1.4. exo-1, 4-beta-glucanases. All the examined fungi were also able to degrade, although to a varied extent, such higher forms of cellulose as Standard Whatman cellulose or natural celluloses isolated from pine bark and sawdust. Determination of the cellulolytic activity of fungi against the above-mentioned specific natural substrates affords the possibility of their practical use. 相似文献
11.
Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. 总被引:8,自引:2,他引:8 下载免费PDF全文
Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 相似文献
12.
Anne Christine Steenkjær Hastrup Caitlin Howell Flemming Hofmann Larsen Noppadon Sathitsuksanoh Barry Goodell Jody Jellison 《Fungal biology》2012,116(10):1052-1063
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot. 相似文献
13.
Václav Šašek Olga Volfová Pavla Erbanová B. R. M. Vyas Miroslav Matucha 《Biotechnology letters》1993,15(5):521-526
Summary Of the white rot fungi tested, two strains alone and other three in combination with specific yeasts or bacteria degraded PCBs in polluted soil within interval 20–30%. When all organisms were applied together PCB degradation achieved was about 50%. 相似文献
14.
Won Ryul Ryu Seong Hoon Shim Moon Yup Jang Yeong Joong Jeon Kwang Keun Oh Moo Hwan Cho 《Biotechnology and Bioprocess Engineering》2000,5(3):211-214
The roles of lignin peroxidase, manganese peroxidase, and laccase were investigated in the biodegradation of pentachlorophenol
(PCP) by several white rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains,P. chrysosporium, Trametes sp. andPleurotus sp., was observed. The activities of manganese peroxidase and laccase were detected inTiametes sp. andPleurotus sp. cultures. However, the activities of ligninolytic enzymes were not detected inP. chrysosporium cultures. Therefore, our results showed that PCP was degraded under ligninolytic as well as nonligninolytic conditions. Indicating
that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi. 相似文献
15.
Lee JW Gwak KS Park JY Park MJ Choi DH Kwon M Choi IG 《Journal of microbiology (Seoul, Korea)》2007,45(6):485-491
The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81% compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01%) compared to non-pretreated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass. 相似文献
16.
Removal of PCBs by various white rot fungi in liquid cultures 总被引:1,自引:0,他引:1
The ability ofPhanerochœte chrysosporium, Trametes versicolor, Coriolopsis polyzona, andPleurotus ostreatus growing in a nitrogen-limited mineral medium (NMM) to degrade PCBs in a commercial, Delor 106 mixture at a concentration
of 0.9 ppm was compared. The respective amounts of PCBs removed from the fungal cultures within 3 weeks were 25, 50, 41, and
0%. The capacities of the individual fungal species to remove PCBs correlated to some extent with their capabilities of decolorization
of NMM agar containing both Poly R-478 or Remazol Brilliant Blue R dyes. Enzyme estimations indicated that both high and relatively
stable activities of Mn-dependent peroxidase, Mn-independent peroxidase, lignin peroxidase, and laccase characterized efficient
PCB degraders.
The work was supported by a grant of theAcademy of Sciences of the Zech Republic no. A6301501 and a grant of theAgency of the Zech Republic no. 204/94/1190. 相似文献
17.
18.
The white rot fungus Pleurotus ostreatus, grown for 11 days in basidiomycetes rich medium containing [14C] phenanthrene, metabolized 94% of the phenanthrene added. Of the total radioactivity, 3% was oxidized to CO2. Approximately 52% of phenanthrene was metabolized to trans-9,10-dihydroxy-9,10-dihydrophenanthrene (phenanthrene trans-9,10-dihydrodiol) (28%), 2,2'-diphenic acid (17%), and unidentified metabolites (7%). Nonextractable metabolites accounted for 35% of the total radioactivity. The metabolites were extracted with ethyl acetate, separated by reversed-phase high-performance liquid chromatography, and characterized by 1H nuclear magnetic resonance, mass spectrometry, and UV spectroscopy analyses. 18O2-labeling experiments indicated that one atom of oxygen was incorporated into the phenanthrene trans-9,10-dihydrodiol. Circular dichroism spectra of the phenanthrene trans-9,10-dihydrodiol indicated that the absolute configuration of the predominant enantiomer was 9R,10R, which is different from that of the principal enantiomer produced by Phanerochaete chrysosporium. Significantly less phenanthrene trans-9,10-dihydrodiol was observed in incubations with the cytochrome P-450 inhibitor SKF 525-A (77% decrease), 1-aminobenzotriazole (83% decrease), or fluoxetine (63% decrease). These experiments with cytochrome P-450 inhibitors and 18O2 labeling and the formation of phenanthrene trans-9R,10R-dihydrodiol as the predominant metabolite suggest that P. ostreatus initially oxidizes phenanthrene stereoselectively by a cytochrome P-450 monoxygenase and that this is followed by epoxide hydrolase-catalyzed hydration reactions. 相似文献
19.
Iavmetdinov IS Stepanova EV Gavrilova VP Lokshin BV Perminova IV Koroleva OV 《Prikladnaia biokhimiia i mikrobiologiia》2003,39(3):293-301
Three samples of high-molecular-weight humin-like substances were obtained by solid-phase cultivation of Coriolus hirsutus and/or Cerrena maxima on oat straw. The yield of humin-like substances amounted to 1.38-2.26% of the weight of the plant substrate consumed. These substances, produced both by individual and mixed cultures of the basidiomycetes, were shown to be similar in their structure and physicochemical properties. According to the data of IR and 13C-NMR spectroscopy, the substances contained aromatic fragments and were close to soil humic acids. Studies of the dynamics of laccase production suggested that the humin-like substances were produced bia direct degradation of lignin macromolecules with direct involvement of extracellular laccase. 相似文献
20.
The differential biodegradation of phenolic and nonphenolic (C-4-etherified) lignin units in wheat straw treated with the white rot fungi Pleurotus eryngii and Phanerochaete chrysosporium was investigated under solid-state fermentation conditions. Two analytical techniques applied to permethylated straw were used for this purpose, i.e., alkaline CuO degradation and analytical pyrolysis (both followed by gas chromatography-mass spectrometry for product identification). Despite differences in the enzymatic machinery produced, both ligninolytic fungi caused a significant decrease in the relative amount of phenolic lignin units during the degradation process. Nevertheless, no differences in the biodegradation rates of phenolic and etherified cinnamic acids were observed. Changes in lignin composition and cinnamic acid content were also analyzed in the phenolic and nonphenolic lignin moieties. The results obtained are discussed in the context of the enzymatic mechanisms of lignin biodegradation. 相似文献