首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATBF1(AT motif binding factor 1)基因是一个新发现的抑癌基因,其表达产物是目前发现的分子量最大的转录调节因子,它能和甲胎蛋白(alpha fetoprotein, AFP)基因增强子AT富聚区结合,调节AFP的转录.ATBF1基因表达过程中,由于转录本mRNA的选择性剪接,可产生ATBF1-A和ATBF1-B两种异构体,这两种异构体对AFP表达的调节具有相互对抗作用.ATBF1-A是ATBF1基因的主要表达形式,其能抑制癌细胞生长,而ATBF1-B则能促进癌细胞增殖.本文分析ATBF1异构体如何调控AFP表达及其作用的多样性,阐述ATBF1表达下调对肿瘤细胞生长和侵袭产生的影响;探讨ATBF1异构体抑癌作用的可能机制和选择性应用ATBF1异构体治疗肿瘤的科学意义.  相似文献   

2.
AT模体结合因子1(ATBF1)是一个新发现的抑癌基因,从人肝癌细胞HuH-7中分离得到。ATBF1可与甲胎蛋白基因增强子中AT富含原件结合,其表达产物是目前发现的分子量最大的转录调节因子。ATBF1基因表达过程中,通过选择性剪接产生ATBF1-A和ATBF1-B两种mRNA,这两种mRNA对AFP表达的调节具有相互对抗作用。ATBF1-A是ATBF1基因的主要表达形式,能抑制癌细胞生长;而ATBF1-B则能促进癌细胞增殖。ATBF1作为抑癌基因,为肿瘤的治疗带来新希望,但目前学术界对ATBF1的研究仍然有限。本文重点对ATBF1在神经系统、乳腺癌、胃癌、肝癌、结直肠癌以及其他肿瘤中的研究作综述,以期进一步明确ATBF1的抑癌机制。  相似文献   

3.
4.
5.
6.
7.
8.
9.
SMYD1是组蛋白甲基转移酶,在骨骼肌和心肌中特异表达,是调节心肌和骨骼肌发育的关键因子.虽然SMYD1的生物学功能比较清楚,但细胞外因子调节SMYD1基因表达的机制还没有报导.IGF-1能促进心肌和骨骼肌的发育、加速肌肉的损伤修复过程.通过Western印迹发现,在用IGF-1处理的C2C12细胞中,SMYD1的表达水平随处理时间逐步升高,SRF蛋白和Myogenin的表达也呈现类似的趋势.通过构建不同长度的SMYD1基因启动子荧光素酶报告基因载体,发现SMYD1基因启动子上IGF-1的应答区域位于-620~-110 bp;EMSA实验表明,SRF结合在SMYD1启动子的CArG位点,而IGF-1则能促进SRF与SMYD1启动子的结合;若将启动子上的CArG元件突变,IGF-1对SMYD1启动子的激活效应被削弱.可见IGF-1能够上调SMYD1在C2C12细胞中的表达,并且这种调控作用是部分通过调节SRF与SMYD1启动子上CArG位点的结合而实现的.此外,通过荧光素酶报告基因分析,发现SMYD1能够激活肌肉标志因子肌肉肌酸激酶(MCK)基因活性,而且与MyoD基因存在协同激活效应.因此,SMYD1可能是IGF-1的下游靶基因,SMYD1可能通过与MyoD协同作用,促进肌肉的分化。  相似文献   

10.
11.
The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.  相似文献   

12.
13.
14.
Myoblast C2C12 cells cultured in the presence of FGF2 actively proliferate and showed a differentiation-defective phenotype compared with cells cultured in low serum or in the presence of insulin. These FGF2 effects are associated with sustained activation of p44/p42-MAPK and lack of activation of AKT. Here we demonstrate that Sprouty-2, a protein involved in the negative feedback of receptor tyrosine kinase signaling, when stably overexpressed in C2C12 cells and in the presence of FGF2 produces growth arrest (precluding the expression of PCNA and the phosphorylation of retinoblastoma and inducing the expression of p21(CIP)) and myogenesis (multinucleated myotubes formation, induction of creatine kinase and expression of myosin heavy chain protein). These events were accompanied by repression of p44/p42-MAPK and activation of AKT. When C2C12 cells were stably transfected with a Sprouty-2 (Y55F) mutant defective in inhibiting p44/p42-MAPK activation by FGF, myoblasts in the presence of FGF continue to grow and completely fail to form myotubes. This work is the first evidence of the contribution of sprouty genes to myogenic differentiation in the presence of FGF2.  相似文献   

15.
16.
17.
The transforming growth factor (TGF)-β inducible early gene (TIEG)-1 is implicated in the control of cell proliferation, differentiation, and apoptosis in some cell types. Since TIEG1 functioning may be associated with TGF-β, a suppressor of myogenesis, TIEG1 is also likely to be involved in myogenesis. Therefore, we investigated the function of TIEG1 during myogenic differentiation in vitro using the murine myoblasts cell line, C2C12. TIEG1 expression increased during differentiation of C2C12 cells. Constitutive expression of TIEG1 reduced survival and decreased myotube formation. Conversely, knocking down TIEG1 expression increased the number of viable cells during differentiation, and accelerated myoblast fusion into multinucleated myotubes. However, expression of the myogenic differentiation marker, myogenin, remained unaffected by TIEG1 knockdown. The mechanism underlying these events was investigated by focusing on the regulation of myoblast numbers after induction of differentiation. The knockdown of TIEG1 led to changes in cell cycle status and inhibition of apoptosis during the initial stages of differentiation. Microarray and real-time PCR analyses showed that the regulators of cell cycle progression were highly expressed in TIEG1 knockdown cells. Therefore, TIEG1 is a negative regulator of the myoblast pool that causes inhibition of myotube formation during myogenic differentiation.  相似文献   

18.
Expression of the Evi-1 gene is activated in murine myeloid leukemias by retroviral insertions and in human acute myelogenous leukemia by translocations and inversions involving chromosome band 3q26 where the gene resides. Aberrant expression of the Evi-1 gene has been shown to interfere with myeloid differentiation, which is proposed to be the basis for its role in leukemias. The Evi-1 gene encodes a 145-kDa DNA-binding protein containing two domains of seven and three Cys2-His2 zinc fingers. Previous studies identified a portion of the consensus DNA-binding sequence for the first domain of zinc fingers. The experiments presented here extend these studies and demonstrate that the first domain recognizes a consensus of 15 nucleotides consisting of GA(C/T)AAGA(T/C)AAGATAA. The first three fingers of the first domain do not detectably bind DNA but contribute to the binding by conferring a relative specificity for GACAA verses GATAA in the first position. The first three fingers also contribute to optimal binding of the 15-nucleotide consensus sequence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号