首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amorphous cellulose was used as a specific carrier for the deposition of self-assembled multienzyme complexes capable of catalyzing coupled reactions. Naturally glycosylated fungal cellobiohydrolases (CBHs) of glycosyl hydrolase families 6 and 7 were specifically deposited onto the cellulose surface through their family I cellulose-binding modules (CBM). Naturally glycosylated fungal laccase was then deposited onto the preformed glycoprotein layer pretreated by ConA, through the interaction of mannosyl moieties of fungal glycoproteins with the multivalent lectin. The formation of a cellulase-ConA-laccase composite was proven by direct and indirect determination of activity of immobilized laccase. In the absence of cellulases and ConA, no laccase deposition onto the cellulose surface was observed. Finally, basidiomycetous cellobiose dehydrogenase (CDH) was deposited onto the cellulose surface through the specific interaction of its FAD domain with cellulose. The obtained paste was applied onto the surface of a Clark-type oxygen electrode and covered with a dialysis membrane. In the presence of traces of catechol or dopamine as mediators, the obtained immobilized multienzyme composite was capable of the coupled oxidation of cellulose by dissolved oxygen, thus providing the basis for a sensitive assay of the mediator. Swollen amorphous cellulose plays three different roles in the obtained biosensor as: (i) a gelforming matrix that captures the analyte and its oxidized intermediate, (ii) a specific carrier for protein self-assembly, and (iii) a source of excess substrate for a pseudo-reagent-less assay with signal amplification. The detection limit of such a tri-enzyme biosensor is 50-100 nM dopamine.  相似文献   

2.
A hydroquinone biosensor was developed and used to determine hydroquinone concentration in compost extracts based on the immobilization of laccase on the surface of modified magnetic core-shell (Fe(3)O(4)-SiO2) nanoparticles. Laccase was covalently immobilized on the magnetic nanoparticles by glutaraldehyde, which was modified with amino groups on its surface. The obtained magnetic bio-nanoparticles were attached to the surface of carbon paste electrode with the aid of a permanent magnet to determine hydroquinone. A good microenvironment for retaining the bioactivity of laccase was provided by the immobilization matrix. The linear range for hydroquinone determination was 1 x 10(-7) to 1.375 x 10(-4)M, with a detection limit of 1.5 x 10(-8)M. The current reached 95% of the steady-state current within about 60s. Hydroquinone concentration in compost extracts was determined by laccase biosensor and HPLC, the results of the two methods were approximately the same.  相似文献   

3.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2, 6-dimethoxyphenol (Km = 2.6 x 10(-5) +/- 7 x 10(-6) M), catechol (Km = 2.5 x 10(-4) +/- 1 x 10(-5) M), pyrogallol (Km = 3.1 x 10(-4) +/- 4 x 10(-5) M), and guaiacol (Km = 5.1 x 10(-4) +/- 2 x 10(-5) M). In addition, the laccase catalyzed the polymerization of 1, 8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen's hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

4.
The sensors applied recently for determination of cholinesterase activity are mostly enzymatic amperometric sensors, in spite of their disadvantages: short life-time at ambient temperature, instability of the response, interferences, as well as passivation of the electrode surface. In the present paper a new approach for determination of cholinesterase activity was proposed, overcoming the main drawbacks of the analysis performed with amperometric enzymatic sensors. Instead of the immobilization of enzymes on a conducting electrode surface, whole cells of Arthrobacter globiformis, containing choline oxidase were fixed on a Clark type oxygen probe. Current proportional to bacteria respiration is registered as a sensor response. The application of whole cells of bacteria as a sensing element permits to achieve high stability of the response and long life-time of the sensor at ambient temperature, due to the conservation of the enzyme in its natural micro-environment inside the immobilized cells. The proposed sensor keeps its functionality more than 7 weeks stored in deionized water at ambient temperature. For the first 2 weeks the amplitude of the response decreases with only 10% and at the end of the studied 7 weeks period the response was 50% of the initial. The other advantages of the proposed sensor are: the dissolved oxygen is used as a mediator which concentration can be reliably and interferences free measured by the aim of a Clark type oxygen probe applied as a transducer; reproducible bacterial membranes can be elaborated by filtration of resuspended bacterial culture after preliminary determination of its activity; application of membranes containing lyophilized bacteria capable to be conserved infinitely long time and activated just before their application; negligible cost compared with the sensors based on immobilized enzymes. The steady-state response of the proposed bacterial sensor to choline obtained in 200 s is linear in the investigated concentration range up to 2 x 10(-4) moldm(-3), with detection limit of 8 x 10(-8) moldm(-3) and sensitivity of 4 x 10(-1) microAcm(3)mol(-1), at pH 6, temperature of 25 degrees C and stirring rate of 300 rpm. Choline is formed as a result of the catalytic hydrolysis (depending on the cholinesterase activity) of the substrate acetylcholine. Linear calibration graph for cholinesterase activity determination was obtained in the range up to 11 mUcm(-3), with a slope of 1.97 x 10(-2) microAcm(3)mU(-1), at pH 6, temperature of 25 degrees C and stirring rate of 300 rpm. The tests with reconstituted lyophilized serum with known activity used as a control sample confirm the accuracy of the proposed method. The relative error of the determination was only 2.82%.  相似文献   

5.
Catecholamine detection using enzymatic amplification   总被引:2,自引:0,他引:2  
Different amplification sensors based on the substrate recycling principle were investigated with respect to their applicability to catecholamine detection. In the bioelectrocatalytic approach, glassy carbon electrodes were modified by laccase or a PQQ-dependent glucose dehydrogenase. Substrate recycling occurs and the detection limit is in the lower nanomolar concentration range (e.g. 10 nM dopamine and 1 nM noradrenaline for the laccase- and glucose dehydrogenase-modified electrodes, respectively). Combinations of glucose dehydrogenase with laccase or tyrosinase were investigated as bienzymatic probes. Among the systems we studied, the laccase/glucose dehydrogenase sensor is the most sensitive (detection limit: 0·5 nM adrenaline). The selectivities of the different sensor systems are discussed. Application of the laccase/glucose dehydrogenase electrode in different media (i.e. brain homogenate, heart effluate) was successfully shown. For samples with high concentrations of interfering substances (uric and ascorbic acid), the interferences can be effectively removed using enzymatic methods.  相似文献   

6.
Response surface methodology (RSM) was successfully applied to enzymatic bio-transformation of 1-naphthol. The experiments were conducted in a closed system containing acetone and sodium acetate buffer, with laccase enzyme. Laccase enzyme used as catalyst was derived from Trametes versicolor (ATCC 200801). The enzymatic bio-transformation rate of 1-naphthol, based on measurements of initial dissolved oxygen (DO) consumption rate in the closed system, was optimized by the application of RSM. The independent variables, which had been found as the most effective variables on the initial DO consumption rate by screening experiments, were determined as medium temperature, pH and acetone content. A quadratic model was developed through RSM in terms of related independent variables to describe the DO consumption rate as the response. Based on contour plots and variance analysis, optimum operational conditions for maximizing initial DO consumption rate, while keeping acetone content at its minimum value, were 301 K of temperature, pH 6 and acetone content of 7% to obtain 9.17 x 10(-3) mM DO/min for initial oxidation rate.  相似文献   

7.
A new, simple and fast spectrophotometric method for the determination of the H(2)S concentration is reported. This method, based on the 1:1 reaction between H(2)S and the ferric derivative of hemoglobin I (HbI) from the bivalve mollusc Lucina pectinata, allows the quantitative determination of H(2)S dissolved in a given solution even at concentrations as low as 1 x 10(-6) M. Note that L. pectinata HbI is considered the physiological receptor of H(2)S.  相似文献   

8.
A method for the direct determination of ascorbic acid (AA) in individual rat hepatocyte based on capillary electrophoresis (CE) coupled with electrochemical detection (ECD) using a new kind of homemade carbon fiber micro-disk bundle electrode has been described. Individual rat hepatocytes were injected into a fused-silica capillary with an inner diameter of 25 microm, and lysed by 0.1% sodium dodecylsulfate (SDS) as cell lysis solution. The following conditions were suitable for the determination of AA: running buffer, 1.83 x 10(-2) mol/l Na2HPO4-1.70 x 10(-3) mol/l NaH2PO4 (pH 7.8); separation voltage, 20.0 kV; detection potential, 0.80 V (vs. saturated calomel electrode (SCE)). The concentration limit of detection (LOD) of the method was 1.7 x 10(-6) mol/l at a signal-to-noise (S/N) ratio of 3, and the mass LOD was 3.0 fmol. The linear dynamic range was from 5.0 x 10(-6) to 5.0 x 10(-4) mol/l with a correlation coefficient of 0.9962 for the injection voltage of 5.0 kV and injection time of 10s. The relative standard deviation (R.S.D.) was 0.85% for the migration time and 1.8% for the peak current. This method was successfully applied to AA determination in rat hepatocyte. The recovery was between 91% and 97%, and the amount of AA in single rat hepatocyte ranged from 28 to 63 fmol.  相似文献   

9.
The reaction of soluble manganese (IV) with sulphite in acidic condition was found to elicit weak chemiluminescence (CL). The CL signal was remarkably enhanced in the presence of three fluoroquinolones, viz. norfloxacin, ofloxacin and ciprofloxacin. Based on these observations, a new flow-injection CL method was developed for the determination of these fluoroquinolones. The method allows determination in the range 5.0 x 10(-8)-1.0 x 10(-6) mol/L for norfloxacin, 1.0 x 10(-7)-8.0 x 10(-6) mol/L for ofloxacin and 1.0 x 10(-7)-3.0 x 10(-5) mol/L for ciprofloxacin, with detection limits of 3 x 10(-8) mol/L, 5 x 10(-8) mol/L and 3 x 10(-8) mol/L, respectively. The method was applied to the determination of fluoroquinolones in pharmaceutical preparations.  相似文献   

10.
Capillary zone electrophoresis was employed for the determination of lactate using end-column amperometric detection at a carbon fiber bundle microdisk electrode. The optimum conditions of separation and detection are 3.6 x 10(-3) mol/l Na(2)HPO(4)-1.4 x 10(-3) mol/l NaH(2)PO (pH 7.2) for the buffer solution, 18 kV for the separation voltage and 1.60 V versus the saturated calomel electrode for the detection potential. The limit of detection is 7.6 x 10(-7) mol/l or 1.7 fmol (S/N=3) and the linear range is 1.7 x 10(-6)-8.2 x 10(-4) mol/l for the injection voltage of 6 kV and injection time of 5 s. The RSD is 1.8% for the migration time and 3.3% for the electrophoretic peak current. The method was applied to the determination of lactate in human saliva. The recovery of the method is between 95 and 109%.  相似文献   

11.
Based on the chemiluminescence (CL) intensity generated from the potassium ferricyanide [K(3)Fe(CN)(6)]-rhodamine 6G system in sodium hydroxide (NaOH) medium, a new sensitive flow-injection chemiluminescence (FI-CL) method has been developed, validated and applied for the determination of three kinds of H(2)-receptor antagonists: cimetidine (CIMT), ranitidine (RANT) hydrochloride and famotidine (FAMT). Under the optimum conditions, the linear range for the determination was 1.0 x 10(-9)-7.0 x 10(-5) g/ml for CIMT, 1.0 x 10(-9)-5.0 x 10(-5) g/mL for RANT hydrochloride and 5.0 x 10(-9)-7.0 x 10(-5) g/mL for FAMT. During 11 repeated measurements of 1.0 x 10(-6) g/mL sample solutions, the relative standard deviations (RSDs) were all <5%. The detection limit was 8.56 x 10(-10) g/mL for CIMT, 8.69 x 10(-10) g/mL for RANT hydrochloride and 2.35 x 10(-9) g/mL for FAMT (S:N = 3). This method has been successfully implemented for the analysis of H(2)-receptor antagonists in pharmaceuticals.  相似文献   

12.
Aerobic microbial growth at low oxygen concentrations   总被引:8,自引:3,他引:5       下载免费PDF全文
Sterilizable membrane probes were used to study the relation between oxygen concentration and respiration rate in Candida utilis growing on acetate. When the organism was grown in a continuous fermentor at various dissolved oxygen concentrations (0.23 x 10(-6) to 32 x 10(-6)m), with time allowed for full adaptation to each oxygen concentration, the relationship between oxygen concentration and growth rate simulated Michaelis-Menten behavior, giving an apparent K(m) for oxygen of 1.3 x 10(-6)m. When respiration rate was measured at various oxygen concentrations without allowing time for adaptation, it was found that the respiration rate was directly proportional to O(2) concentration at low O(2) concentrations, and independent of O(2) concentration at high O(2) concentrations. Transition from one type of behavior to the other was fairly abrupt. The respiration rate in the presence of excess oxygen depended on the O(2) concentration at which the cells were grown, but the rate at low O(2) concentrations did not. There was evidence that, at low oxygen concentrations, oxygen diffusion through the cell substance limits respiration rate, at least in part.  相似文献   

13.
A novel and sensitive method for the determination of difenidol hydrochloride has been established using capillary electrophoresis coupled with end-column electrogenerated chemiluminescence (ECL) detection, based on the ECL reaction of tris(2,2'-bypyridine)ruthenium(II) (Ru(bpy)(3)(2+)) with the tertiary amino groups of the difenidol analyte. Parameters that affect separation and detection were optimized. Calibration curve was linear over the range from 1 x 10(-6)M to 6 x 10(-5)M with a detection limit of 1 x 10(-7)M (S/N=3). Separation of difenidol hydrochloride from clomifene citrate and lidocaine was achieved using the proposed method. This method was successfully utilized to the assay of the active ingredients of the "difenidol hydrochloride" tablets and to the investigation on the interaction of difenidol hydrochloride with hemoglobin. The number of binding sites and the binding constant were estimated as (11.2 and 2.5) x 10(3)M(-1), respectively.  相似文献   

14.
This is the first report of terbium(III) as a probe of second-order scattering (SOS) for the determination of proteins in human serum at nanogram levels. A sensitive method has been developed using light scattering, based on the fact that the weak SOS of proteins can be enhanced in the presence of terbium(III) and sodium dodecyl sulphonate (SDS). With this method, 7.0 x 10(-9)-1.0 x 10(-5) g/mL human serum albumin (HSA) and 5.0 x 10(-9)-5.0 x 10(-6) g/mL gamma-globulin can be determined; the detection limits were 4.4 ng/mL for HSA and 3.1 ng/mL for gamma-globulin. The method has been applied to the detection of total proteins in human serum samples, and the results are consistent with those obtained by the Coomassie brilliant blue (CBB) G-250 assay.  相似文献   

15.
Pantoprazole is used as an anti-ulcer drug through inhibition of H(+), K(+)-adenosine 5(')-triphosphatase in gastric parietal cells. It reduces the gastric acid secretion regardless of the nature of stimulation. The use of differential pulse voltammetry for the determination of pantoprazole in pharmaceutical dosage forms and human plasma using a glassy carbon electrode has been examined. The best voltammetric response was reached for a glassy carbon electrode in Britton-Robinson buffer solution of pH 5.0 submitted to a scan rate of 20.0 mVs(-1) and a pulse amplitude of 50.0 mV. This electroanalytical procedure was able to determine pantoprazole in the concentration range 6.0 x 10(-6)-8.0 x 10(-4)M. Precision and accuracy of the developed method was checked with recovery studies. The limit of detection and limit of quantitation were found to be 4.0 x 10(-7) and 9.0 x 10(-7)M, respectively. Rapidity, precision, and good selectivity were also found for the determination of pantoprazole in pharmaceutical dosage forms and human plasma. For comparative purposes high-performance liquid chromatography with a diode array and UV/VIS detection at 290.0 nm determination also was developed.  相似文献   

16.
In this work, we report the application of novel, water-soluble fluorescent Ag clusters in fluorescent sensors for detecting cysteine, an important biological analyte. The fluorescence of poly(methacrylic acid) (PMAA)-templated Ag clusters was found to be quenched effectively by cysteine, but not when the other alpha-amino acids were present. By virtue of the specific response, a new, simple, and sensitive fluorescent method for detecting cysteine has been developed based on Ag clusters. The present assay allows for the selective determination of cysteine in the range of 2.5 x 10(-8) to 6.0 x 10(-6)M with a detection limit of 20 nM at a signal-to-noise ratio of 3. Based on the absorption and fluorescence studies, we suggested that cysteine quenched the emission by the thiol-adsorption-accelerated oxidation of the emissive Ag clusters. The present study shows a promising step toward the application of silver clusters, a new class of attractive fluorescence probes.  相似文献   

17.
Earlier, we had reported purification of three thiol proteinase inhibitors (TPI-1 of 70 kDa, TPI-3 of 195 kDa and TPI-4 of 497 kDa) from human plasma. In the present study we report that TPI-1 binds to papain in the stoichiometry ratio (E/I) of 1:1 while TPI-3 and TPI-4 bind in the ratio of 1.5:1 and 3.2:1 respectively. The K(m) for papain with BAPNA as substrate and Kcat/K(m) values for TPI-1, TPI-3 and TPI-4 were 2.7 x 10(-6) M, 0.84 nM/sec; 3.2 x 10(-6) M, 0.75 nM/sec; and 3.6 x 10(-6) M, 0.72 nM/sec respectively. The Ki values were found to be 1.48 nM for TPI-1, 0.133 nM for TPI-3 and 0.117 nM for TPI-4. The UV absorption and fluorescence emission spectra study suggest involvement of aromatic residues in the binding process. This study suggests that TPI-4 is the most potent inhibitor of thiol proteinases.  相似文献   

18.
We reported on the utilization of a novel attractive nanoscaled calcium carbonate (nano-CaCO(3))-polyphenol oxidase (PPO) biocomposite to create a highly responsive phenol biosensor. The phenol sensor could be easily achieved by casting the biocomposite on the surface of glassy carbon electrode (GCE) via the cross-linking step by glutaraldehyde. The special three-dimensional structure, porous morphology, hydrophilic and biocompatible properties of the nano-CaCO(3) matrix resulted in high enzyme loading, and the enzyme entrapped in this matrix retained its activity to a large extent. The proposed PPO/nano-CaCO(3) exhibited dramatically developed analytical performance such as such as a broad determination range (6 x 10(-9) -2 x 10(-5)M), a short response time (less than 12 s), high sensitivity (474 mA M(-1)), subnanomolar detection limit (0.44 nM at a signal to noise ratio of 3) and good long-term stability (70% remained after 56 days). In addition, effects of pH value, applied potential, temperature and electrode construction were investigated and discussed.  相似文献   

19.
A simple selective method for determination of ascorbic acid using polymerized direct blue 71 (DB71) is described. Anodic polymerization of the azo dye DB71 on glassy carbon (GC) electrode in 0.1M H(2)SO(4) acidic medium was found to yield thin and stable polymeric films. The poly(DB71) films were electroactive in wide pH range (1-13). A pair of symmetrical redox peaks at a formal redox potential, E('0)=-0.02V vs. Ag/AgCl (pH 7.0) was observed with a Nernstian slope -0.058V, is attributed to a 1:1 proton+electron involving polymer redox reactions at the modified electrode. Scanning electron microscope (SEM), atomic force microscope (AFM) and electrochemical impedance spectroscopy (EIS) measurements were used for surface studies of polymer modified electrode. Poly(DB71) modified GC electrode showed excellent electrocatalytic activity towards ascorbic acid in neutral buffer solution. Using amperometric method, linear range (1x10(-6)-2x10(-3)M), dynamic range (1x10(-6)-0.01M) and detection limit (1x10(-6)M, S/N=3) were estimated for measurement of ascorbic acid in pH 7.0 buffer solution. Major interferences such as dopamine and uric acid are tested at this modified electrode and found that selective detection of ascorbic acid can be achieved. This new method successfully applied for determination of ascorbic acid in commercial tablets with satisfactory results.  相似文献   

20.
A stable electroactive thin film of poly(caffeic acid) has been deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. Poly(caffeic acid) was used as a modified electrode for the detection of ascorbic acid (AA), epinephrine (EP), uric acid (UA) and their mixture by cyclic voltammetry. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards AA, EP and UA with activation overpotential. For the ternary mixture containing AA, EP and UA, the three compounds can well separate from each other at the scan rate of 20 mVs(-1) with a potential difference of 156, 132 and 288 mV between AA and EP, EP and UA and AA and UA, respectively, which was large enough to determine AA, EP and UA individually and simultaneously. The catalytic peak current obtained, was linearly dependent on the AA, EP and UA concentrations in the range of 2.0 x 10(-5) to 1.0 x 10(-3) mol l(-1), 2.0 x 10(-6) to 8.0 x 10(-5) mol l(-1) and 5.0 x 10(-6) to 3.0 x 10(-4) mol l(-1), and the detection limits for AA, EP and UA were 7.0 x 10(-6), 2.0 x 10(-7) and 6.0 x 10(-7) mol l(-1), respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of EP in practical injection samples and that of EP, UA and AA simultaneously with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号