首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasmic lipid droplet (CLD) and very low-density lipoprotein are generated from the lipid ester synthesized in the endoplasmic reticulum. The lipid ester deposited between the two membrane leaflets is supposed to bulge toward the cytoplasm to make a nascent CLD, but its size must be below the resolution limit of conventional techniques and the detectable CLD should only form after acquisition of additional lipid esters. The CLD is different from vesicular organelles in that the internal content is highly hydrophobic and the shape is invariably spherical. Due to its unique characteristics, quantitative discordance between the surface and the volume may occur in the growth and/or involution processes of the CLD. The possibility that these processes may give rise to the structural and functional diversities of the CLD is discussed.  相似文献   

2.
Electric defibrillation counter shock impulses and AMI influence on lipid peroxide activation processes were conducted. The results showed insignificant lipid peroxide activation after defibrillation counter shock (200-300 J), while the same activation in first hours of coronary artery ligation was 1.4-1.5 times greater. We concluded that lipid peroxide activation products may be an appropriate method for AMI evaluation and prognosis.  相似文献   

3.
1. Studies were performed regarding the effects of cadmium and copper on the lipid peroxide contents and on the initial rates of NADPH-dependent and Fe-ascorbic acid-dependent lipid peroxidation in the microsomes of hepatopancreas of the scallop Mizuhopecten yessoensis exposed to these pollutants for 3 weeks.2. The results demonstrated that copper accumulation in hepatopancreas cells was accompanied by a significant increase in hydroperoxide and malondialdehyde contents in microsomal membranes, and by alteration in the both enzymic and non-enzymic lipid peroxidation. Cadmium didn't appear to potentiate lipid peroxidation processes in mollusc tissues.3. Possible reasons for different effects of these metals on lipid peroxidation processes are discussed.  相似文献   

4.
The synthesis and assembly of thylakoid membrane polar glycerolipid (glycolipid, phospholipid, and ether lipid) have been monitored in synchronous cultures of the green alga Chlamydomonas reinhardtii 137+. A "pulse" protocol using radioactive acetate as the lipogenic precursor was devised to allow assessment of both processes during the 24-h (12-h light/12-h dark) vegetative cell cycle. Under these conditions, acetate incorporation into each chromatographically resolved lipid at the cellular level reliably reflects lipid synthesis, and the appearance of radiolabeled lipid in purified photosynthetic membrane is indicative of the lipid assembly attendant to thylakoid biogenesis. Our results demonstrate that polar glycerolipid is synthesized by the alga and is assembled into its thylakoid membrane continuously, but differentially, with respect to cell cycle time. Synthesis and assembly are most rapid during the photoperiod (mid-to-late G1), reach maximum rates at mid- photoperiod, and are comparatively negligible in the dark (S, M, and early-to-mid G1). The extent to which synthesis and assembly vary within this general kinetic pattern, though, is characteristic of each thylakoid lipid, suggesting that the processes take place in a multistep manner with some temporal coordination among the different lipid types. Parallelism between the cyclic patterns of polar lipid synthesis at the cellular level and of polar lipid assembly into photosynthetic membrane at the subcellular level indicates that lipid production is not only essential to continuing thylakoid biogenesis but is also the critical determinant of the kinetics of thylakoid lipid assembly.  相似文献   

5.
Biological membranes have unique and highly diverse compositions of their lipid constituents. At present, we have only partial understanding of how membrane lipids and lipid domains regulate the structural integrity and functionality of cellular organelles, maintain the unique molecular composition of each organellar membrane by orchestrating the intracellular trafficking of membrane-bound proteins and lipids, and control the steady-state levels of numerous signaling molecules generated in biological membranes. Similar to other organellar membranes, a single lipid bilayer enclosing the peroxisome, an organelle known for its essential role in lipid metabolism, has a unique lipid composition and organizes some of its lipid and protein components into distinctive assemblies. This review highlights recent advances in our knowledge of how lipids and lipid domains of the peroxisomal membrane regulate the processes of peroxisome assembly and maintenance in the yeast Yarrowia lipolytica. We critically evaluate the molecular mechanisms through which lipid constituents of the peroxisomal membrane control these multistep processes and outline directions for future research in this field.  相似文献   

6.
The indirect effect of rat skin ultraviolet (UV) irradiation on lipid peroxidation and enzymatic systems of the liver has been studied. The processes of lipid peroxidation have been intensified after 72 hours of UV-irradiation, which is evidently due both to the activation of enzymatic system of initiation and propagation of lipid peroxidation and to the parallel decrease of the activity of enzymatic system regulation of given process in liver.  相似文献   

7.
The mechanistic target of rapamycin is a protein kinase that, as part of the mechanistic target of rapamycin complex 1 (mTORC1), senses both local nutrients and, through insulin signalling, systemic nutrients to control a myriad of cellular processes. Although roles for mTORC1 in promoting protein synthesis and inhibiting autophagy in response to nutrients have been well established, it is emerging as a central regulator of lipid homeostasis. Here, we discuss the growing genetic and pharmacological evidence demonstrating the functional importance of its signalling in controlling mammalian lipid metabolism, including lipid synthesis, oxidation, transport, storage and lipolysis, as well as adipocyte differentiation and function. Defining the role of mTORC1 signalling in these metabolic processes is crucial to understanding the pathophysiology of obesity and its relationship to complex diseases, including diabetes and cancer.  相似文献   

8.
The processes of lipid peroxidation have been studied in bovine adrenal cortex in vitro. The lipid peroxidation rate in this tissue is shown to be dependent on the content of metal ions. EDTA, deferroxamine and penicyllamine inhibit spontaneous lipid peroxidation by 25, 50 and 42%, respectively. The ability to activate the process permits arranging metal ions in the following sequence: Fe2+ greater than Fe3+ greater than Cu2+ greater than Mg2+ greater than Mn2+. The maximum activation of lipid peroxidation is observed at Fe2+ and Fe3+ concentrations within the range of 5 x 10(-6) x 10(-4) M.  相似文献   

9.
The chronic combined inhalation influence of nitric oxides (II, IV), amorphic hydrophobic silicon dioxide, lead and radon on the free radical processes intensively was investigated. The dienic conjugates, lipid hydroperoxides and MDA concentration in the liver and kidney of the white mongrel male-rats was defined. It has been shown that lipid peroxidation process displaies sensitivity toward complex exposure of the most wide-spreader xenobiotics. It was expressed in the content decreasing of there products at the first step of our experience as a result of the action of the adaptive and compensative mechanisms directed to the suppression of the peroxidation processes. As a result of the antioxidant system powers exhaustion it was found the content rising of the lipid peroxidation products at the last step of our experience. It has been proposed to use the total content index of the lipid peroxidation products as a criteria of the organism resistant ion toward action of the exogenic factors of various origin.  相似文献   

10.
Lipid rafts are specialized cholesterol-enriched microdomains in the cell membrane. They have been known as a platform for protein-protein interactions and to take part in multiple biological processes. Nevertheless, how lipid rafts influence protein properties at the proteomic level is still an open question for researchers using traditional biochemical approaches. Here, by annotating the lipid raft localization of proteins in human protein-protein interaction networks, we performed a systematic analysis of the function of proteins related to lipid rafts. Our results demonstrated that lipid raft proteins and their interactions were critical for the structure and stability of the whole network, and that the interactions between them were significantly enriched. Furthermore, for each protein in the network, we calculated its “lipid raft dependency (LRD),” which indicates how close it is topologically associated with lipid rafts, and we then uncovered the connection between LRD and protein functions. Proteins with high LRD tended to be essential for mammalian development, and malfunction of these proteins was inclined to cause human diseases. Coordinated with their neighbors, high-LRD proteins participated in multiple biological processes and targeted many pathways in diseases pathogenesis. High-LRD proteins were also found to have tissue specificity of expression. In summary, our network-based analysis denotes that lipid raft proteins have higher centrality in the network, and that lipid-raft-related proteins have multiple functions and are probably concerned with many biological processes in disease development.  相似文献   

11.
The erythrocyte ghosts were irradiated with doses of 4 x 10(-3) Gy-10(3) Gy. Changes in the membrane lipid microviscosity, membrane proteins' structural mobility, membrane surface potential and intensity of the lipid peroxidation processes were determined. It has been established that the features of membrane structural changes are characterised, by polyphase changes of examined parameters.  相似文献   

12.
Treatment of cultured rat osteoblasts with staurosporine caused a rapid outgrowth of long slender cellular processes and the formation of stellate cells. The number of stellate cells increased with higher concentrations of and longer incubation with staurosporine. Scanning electron microscopy (SEM) revealed that the smooth surface of control polygonal cells became ruffled with many long slender cellular processes, thus increasing the cell surface area. Transmission electron microscopy (TEM) of the stellate cells showed a rich accumulation of large lipid droplets in the cytoplasm. Some lipid droplets had coalesced under the cytoplasmic membrane. We suggest that staurosporine has an effect on the differentiation of cultured rat osteoblasts.  相似文献   

13.
The non-random mixing of biomembrane components, especially saturated phospholipids, exhibits important consequences in molecular biology. Particularly, the distribution of lipids within natural and model membranes is strongly determined by the selective association processes. These processes of phospholipids take place due to the cooperative modes in multiparticle systems as well as the specific lipid-lipid interactions both in the hydrophobic core and in the region of the polar headgroups. We demonstrated that the investigation of the selective association processes of saturated phospholipids might contribute to the insight of the lipid domains appearance inside the bilayer membranes. The association probabilities of like-pairs and cross-pairs from a binary mixture of saturated phospholipids were tested for both parallel and anti-parallel alignments of the polar headgroups. The present model confirms the experimental evidence for saturated phospholipids to have a high tendency for association in parallel configuration of the electric dipole moments of the polar headgroups whether the cross-sectional area of the polar headgroup is in an usual range of 25-55 2. There are three major lipid domains in a binary mixture of saturated phospholipids: (i) lipid domains in non-mixed phase of the first mixture component, in parallel alignment of the polar headgroups; (ii) lipid domains in non-mixed phase of the second mixture component, in anti-parallel alignment of the polar headgroups; (iii) lipid domains in mixed phase. We think that the selective association processes of phospholipids are neither exclusively, nor only involved in promoting the lipid domains appearance through bilayer phospholipid membranes.  相似文献   

14.
Recent developments in the understanding of molecular diffusion phenomena in membranes are reviewed. Both model bilayers and biological membranes are considered in respect of lateral diffusion, rotational diffusion and transverse diffusion (flip-flop). For model systems, particular attention is paid to recent data obtained using surface-specific techniques such as sum frequency generation vibrational spectroscopy on supported lipid bilayers, and fluorescence correlation spectroscopy on giant unilamellar vesicles, both of which have yielded new insights into the intrinsic rates of diffusion and the energetic barriers to processes such as lipid flip-flop. Advances in single-molecule and many-molecule fluorescence methodologies have enabled the observation of processes such as anomalous diffusion for some membrane species in biological membranes. These are discussed in terms of new models for the role of membrane interactions with the cytoskeleton, the effects of molecular crowding in membranes, and the formation of lipid rafts. The diffusion of peptides, proteins and lipids is considered, particularly in relation to the means by which antimicrobial peptide activity may be rationalized in terms of membrane poration and lipid flip-flop.  相似文献   

15.
The literary data and own results concerning the stages of free radical lipid oxidation inhibition during the adaptation of animals to stress are reviewed. Using the chronic stress models such as immobilization, experimental neurosis, it has been shown, that in general adaptation syndrome the stage of permanent adaptation to stress corresponds to a permanent inhibition of free radical processes in animal tissues. This stage is accompanied by the activation of superoxide radical scavenging and corresponding changes of lipid composition. similar results are obtained on the model of the development of permanent compensation processes after brain injury. Studying the acute stress it has been found, that during first minutes the inhibition of lipid peroxidation which precedes its further activation takes place. This stage corresponds to the realization of urgent adaptation phase to stress. The role of inhibition of free radical processes in mechanisms of urgent and permanent adaptation to stress is under discussion.  相似文献   

16.
Neutral lipid is stored in intracellular lipid droplets, whose biology remains incompletely understood. Recent work by Farese and colleagues (Guo et al., 2008) takes a systematic genome-wide approach to comprehensively identify processes regulating formation and metabolism of lipid droplets. The findings may offer novel insights into diseases involving lipid storage.  相似文献   

17.
Injection of Salmonella typhimurium endotoxin to the laboratory animals (rabbits) in dose of 1 mg/ml (LD84) induces the particular changes in the thrombocyte vessels system of hemostasis: decrease of aggregatory ability of thrombocytes, increase of thromboxane A2 and prostacyclin activation of lipid peroxidation process. Use of indomethacin--the cyclooxygenase inhibitor--leads to less progressive alterations of the studied parameters of the thrombocyte vessels hemostasis and lipid peroxidation processes.  相似文献   

18.
The effects of some ethanol-metabolizing systems (aldehyde dehydrogenase, catalase, cytochrome P450 2E1) on activation of lipid peroxidation (LPO) processes in the gastrointestinal tract of rats have been studied using inhibitors of these systems. The intensity of LPO processes was evaluated by thiobarbituric acid-reactive substances and chemiluminiscence intensity. It was found, that acetadehyde metabolism plays the major role in the LPO induction in epithelium of the rat gastrointestinal tract.  相似文献   

19.
Influenza virus infection is associated with development of oxidative stress in lung and blood plasma, viz. increase of primary and secondary lipid peroxidation products. It was established that rimantadine treatment led to a decrease of the products of lipid peroxidation in tissues of mice experimentally infected with influenza virus A/Aichi/2/68 (H3N2). The effect is strongest in blood plasma (a decrease of about 50%) and weaker in the lung (about 20%). To elucidate the mechanism of this action of rimantadine, experiments were carried out with some model systems. The capability of rimantadine to scavenge superoxide radicals (scavenging properties) was studied in a system of xanthine-xanthine oxidase to generate superoxide. The amount of superoxide was measured spectrophotometrically by the NBT-test and chemiluminesce. Rimantadine does not show scavenging properties and its antioxidant effect observed in vivo, is not a result of its direct action on the processes of lipid peroxidation and/or interaction with antioxidant enzymes. The antioxidant properties of rimantadine were investigated by measurement of induced lipid peroxidation in a Fe2+ and (Fe2+ - EDTA) system with an egg liposomal suspension. Our findings with model systems do not prove an antioxidant or prooxidant effect of the drug on the processes of lipid peroxidation. Apparently, the observed antioxidant effect of rimantadine in vivo is not connected directly with free radical processes in the organism.  相似文献   

20.
The efficiency of hydroperoxides (tert-butyl hydroperoxide, hydrogen peroxide) and sulfhydryl reagents (iodoacetamide, p-chloromercuribenzene sulfonic acid) as glyceollin elicitors was examined in relation to sulfhydryl oxidation, or alteration, and to lipid peroxidation, in 3-d-old soybean hypocotyl/radicle, Glycine max. These oxidative events were investigated as possible early steps in the transduction mechanisms leading to phytoalexin synthesis. Free protein sulfhydryl groups were not modified after any of the eliciting treatments, thus indicating that immediate massive protein oxidation or modification cannot be considered a signal transduction step. Unlike sulfhydryl reagents, which led to a decrease of the free nonprotein sulfhydryl group (free np-SH) pool under all of the eliciting conditions, the results obtained with hydroperoxides indicated that immediate oxidation of the np-SH is not required for the signal transduction. Moreover, elicitation with 10 mM tertbutyl hydroperoxide did not lead to further oxidation or to changes in np-SH level during the critical phase of phenylalanine ammonialyase activation (the first 20 h), suggesting that np-SH modifications are probably not involved in hydroperoxide-induced elicitation. On the other hand, all treatments leading to significant glyceollin accumulation were able to trigger a rapid (within 2 h) lipid peroxidation process, whereas noneliciting treatments did not. In addition, transition metals, such as Fe2+ and Cu+, were shown to stimulate both hydrogen peroxide-induced lipid peroxidation and glyceollin accumulation, again emphasizing that the two processes are at least closely linked in soybean. Among the oxidative processes triggered by activated oxygen species, oxidation of sulfhydryl compounds, or lipid peroxidation, our results suggest that lipid peroxidation is sufficient to initiate glyceollin accumulation in soybean. This further supports the hypothesis that lipid peroxidation could be involved as a step in the signal cascade that leads to induction of plant defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号