共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract: Qualitative or semi-quantitative visual assessments are most often used for estimating population size of herbivorous insects. The precision of these estimates, however, is often difficult to establish. A 'simulation game' with the horse chestnut leafminer, Cameraria ohridella Deschka & Dimic (Lep., Gracillariidae) shows that visual, semi-quantitative assessments can provide accurate information. Damaged areas of 411 horse chestnut leaves collected in 100 sites were closely related to mine numbers despite some variability in mine and leaf size ( R 2 = 0.915; n = 411; P < 0.001). On the basis of this relationship, two methods of population assessment are compared: (i) digital image processing of leaf damage and (ii) visual assessment using a damage key reflecting the relative infested area on each leaf (0, 0%; 1, 0–2%; 2, 2–5%; 3, 5–10%; 4, 10–25%; 5, 25–50%; 6, 50–75%; 7, 75–100%). Both methods used to estimate damage presented a similar, close relationship to the 'real' numbers of mines ( R 2 = 0.858; n = 777; P < 0.001 for image processing and R 2 = 0.905; n = 777; P < 0.001 for visual assessment). The potential of using visual assessments as an accurate and fast method in situ at the tree scale is discussed. 相似文献
3.
M. Gilbert A. Svato M. Lehmann & S. Bacher 《Entomologia Experimentalis et Applicata》2003,107(1):25-37
Spatial patterns of the horse chestnut leafminer Cameraria ohridella Deschka & Dimic (Lepidoptera: Gracillariidae) population density was analysed in the cities of Bern and Brussels in order to explore its spatial population dynamics. The surveys were carried out in Bern in 1998 and 2000 and in Brussels in 2001 to assess population density in relation to local characteristics. In Brussels, population density was also measured using pheromone traps distributed over the city and collected twice per moth generation. A quantitative relationship was found between local population density (measured by pheromone traps and survey observations) and the amount of leaves left on the ground the previous fall. Several other factors were related to observed infestation levels: the occurrence of the pathogen Guignardia aesculi was inversely related to infestation by C. ohridella in Bern in 1998 and 2000, the number of horse chestnut trees within 800 m distance was positively related to infestation level in Bern in 2000, and the proportion of green areas within 100 m and the number of other horse chestnut trees within 2000 m were positively related to infestation levels in the 2001 Brussels survey. The pattern of infestation levels as a function of distance to potential population reservoirs suggested that C. ohridella re‐invades areas where overwintering leaves have been cleaned from refuge areas such as parks or urban forests. Our results indicate that the removal of leaves is a feasible first aid control measure to reduce moth population densities. However, leaf removal may not reduce moth densities when done improperly. In places where proper leaf removal is not feasible, other control measures are needed. 相似文献
4.
The introduction of species is a tool of climate-smart management to reduce environmental risks on forest productivity, which, however, requires information regarding the climatic sensitivity of trees. The main advantages of successful introductions are improved productivity and low susceptibility to pests and diseases. The latter, however, can be compromised by the cointroduction of pests, which, however, can be delayed. In this regard, horse chestnut (Aesculus hippocastanum L.), which has been mostly used in parks and greeneries, yet has some forestry potential and has encountered an outbreak of leaf miner moth (Cameraria ohridella Deschka & Dimić), might be considered as a model species. In this study, the sensitivity of radial increment of horse chestnut growing in an experimental forest stand in Latvia and the effect of leaf miner moth on it were assessed by classical dendrochronological techniques and multiple regression analysis. In total, the time series of the tree-ring width of 27 trees were measured and successfully cross-dated. During the common period of 1978–2019, radial increment showed intermediate sensitivity, yet the dataset was representative of environmental signals with trees generally showing similar patterns of variation. Although the studied horse chestnut was growing under a cold climate (compared to native), the complex effects of summer moisture availability and winter thermal regime were estimated. Furthermore, meteorological conditions had direct and carry-over effects on increment. In general, studied trees favoured warm and moist summers and warm winters. Surprisingly, the emergence of the leaf miner moth had only some effect on the sensitivity of tree-ring width, particularly regarding temperature in May. The estimated weather-growth relationships suggest that increment might favour warming, although the emergence of the pest increases the complexity of the relationships. 相似文献
5.
It was shown that the content of carbohydrates and their composition in embryo axes of horse chestnut seeds changed as seeds acquired a capability of dormancy release and germination. Sucrose prevailed among carbohydrates, comprising to 150–160 mg/g dry wt. During the first half of the seed imbibition time, oligosaccharides, namely raffinose and stachyose, degraded, whereas the contents of glucose and fructose were very low. The second half of the imbibition period (until radicle protrusion) was characterized by a cessation of oligosaccharide breakdown and accumulation of monosaccharides. Carbohydrate balance showed that the contribution of oligosaccharide breakdown to sucrose and monosaccharide accumulation was rather small, and monosaccharides accumulated mostly at the expense of sucrose gradually coming from cotyledons during imbibition. The trend of carbohydrate metabolism in imbibing axial organs was similar during the entire period of a seed dormancy release in the course of stratification. A readiness for the commencement of these processes during the entire dormancy period implies that carbohydrate conversions in embryo axes are not a trigger for a dormancy release. Monosaccharide accumulation in embryo axes before radicle protrusion produces an increase in the osmotic pressure, as compared to that provided by sucrose, by approximately 20%. Recalcitrance of the horse chestnut seeds is discussed in relation to the role of carbohydrates and other endogenous osmotica in the establishment of osmotic properties. 相似文献
6.
亚热带3种树种凋落叶厚度对其分解速率及酶活性的影响 总被引:4,自引:0,他引:4
对中国亚热带树种杉木(Cunninghamia lanceolata)、香樟(Cinnamomum camphora)、银杏(Ginkgo biloba)3个树种在不同凋落物厚度下凋落物分解速率和分解酶活性进行了探究.利用分解网袋法,根据浙江省的平均酸雨水平,在酸雨(pH4.0)条件下设置了凋落物40g、凋落物20g、凋落物10g 3个梯度.结果表明:凋落物分解速率随厚度的增加呈加快的趋势,杉木凋落物10、20、40g的年分解系数K分别为0.24、0.27、0.34,香樟凋落物10、20、40g的年分解系数K分别为0.25、0.3、0.32,银杏凋落物10、20、40g的年分解系数K分别为0.42、0.5、0.58;脲酶活性表现为:凋落叶40g>凋落叶20g>凋落叶10g,纤维素酶活性表现为:凋落叶40g、凋落叶20g>凋落叶10g,蔗糖酶活性表现为:后期凋落叶40g>凋落叶20g>凋落叶10g,凋落物分解过程是多种酶共同作用的结果. 相似文献
7.
泰山4种优势造林树种叶片凋落物分解对凋落物内细菌群落结构的影响 总被引:2,自引:0,他引:2
为研究泰山不同造林树种凋落物叶分解对细菌群落的影响。以泰山4种主要优势造林树种刺槐(Robinia pseucdoacacia)、麻栎(Quercus acutissima)、油松(Pinus tabulaeformis)和赤松(Pinus densiflora)为研究对象,采用凋落物分解袋法及Illumina Miseq测序平台对细菌16S rDNA V4—V5区扩增产物进行双端测序,分析了4种树种叶片凋落物分解对细菌群落结构及多样性的影响。结果表明:(1)4种树种叶片分解速率差异显著(P0.05),刺槐分解速率显著高于其他3个树种(P0.05),表现为刺槐赤松油松麻栎。(2)4种叶凋落物分解一年后化学元素含量与初始化学元素相比均存在显著差异。C、木质素含量均显著降低(P0.05);N、P含量显著升高(P0.05)。(3)所有样品一共获得643440条有效序列,分属于35门,92纲,121目,246科,410属,206种。细菌群落NMDSβ-多样性分析显示除油松和赤松间差异较小外,其他树种间差异程度均较大。其中,细菌群落相对丰度在5%以上的优势类群是变形菌门、放线菌门、拟杆菌门、酸杆菌门,且在4种处理之间差异显著(PSymbol|@@0.05)。在纲水平上,α-变形菌纲、β-变形菌纲、不明放线菌纲、鞘脂杆菌纲、γ-变形菌纲、δ-变形菌纲为主要的优势纲,其中不明放线菌纲和鞘脂杆菌纲差异显著(PSymbol|@@0.05)。在种水平上,Bradyrhizobium elkanii和Luteibacter rhizovicinus在4个处理中都为优势种,每个处理也都有自己所特有的优势种。(4)4个处理细菌丰富度(OUT、观测到的物种数和ACE指数)和系统发育多样性(PD指数)之间差异显著(PSymbol|@@0.05),且阔叶树种刺槐和麻栎显著高于针叶树种赤松和油松。(5)叶片凋落物性状和细菌群落NMDS分析表明,细菌群落多样性受到凋落物化学性质的影响,尤其是凋落物初始C/N比和木质素/N比。此外,在细菌群落多样性和叶片凋落物化学性质两个因素中,分解速率与凋落物化学性质相关性更大。研究结果有助于理解细菌群落结构和多样性对森林生态系统叶片凋落物分解的影响。 相似文献
8.
In this paper, we describe cellulase and cellobiose dehydrogenase (CBDH) dynamics in relation to incubation time, mass loss
and chemical composition of decomposing deciduous leaf litter. Cellulose disappearance from litter coincided with periods
of maximum cellulase activity. CBDH activity peaked later in decomposition after cellulase activity had declined. Enzyme activity
patterns differed among litter types when expressed on the basis of decomposition time or cumulative mass loss. The patterns
converged when expressed on the basis of chemical composition as indexed by the fraction of cellulose in the lignocellulose
complex. We present a three-stage model of decomposition based on temporal changes in cellulase activities and coincident
changes in litter chemical composition. 相似文献
9.
毛竹凋落叶组成对叶凋落物分解的影响 总被引:1,自引:0,他引:1
毛竹混交林具有较高的生产力和较好的生态功能,可能与混合凋落物的养分归还特征有关。本研究采用凋落物分解袋法对不同混合比例毛竹凋落叶分解特征进行了为期1年的研究,共设置5个处理,分别为Ⅰ(毛竹纯叶)、Ⅱ(毛竹、楠木叶比例为8:2);Ⅲ(毛竹、杉木叶比例8:2)、Ⅳ(毛竹、楠木叶比例5:5)和Ⅴ(毛竹、杉木叶比例5:5)。结果表明,不同处理凋落物分解速率符合Olson指数分解模型,R2均高于0.92。5个处理分解系数的排列顺序为Ⅱ>Ⅰ>Ⅲ>Ⅴ>Ⅳ,分别为0.68、0.66、0.58、0.55和0.49。处理Ⅰ和Ⅱ的分解速度显著高于其他处理,说明并非所有类型毛竹混合凋落叶均会促进凋落物分解,只有合适的比例和树种会促进凋落物分解。其中,竹阔混合凋落叶的分解速度高于竹针混合凋落叶的分解速度,竹阔混交可能更有利于竹林持续生产力的维持。N、P、K3种元素养分释放模式不同,N元素表现为净富集与净释放交替出现;P元素在经过4个月的快速富集后,4—5个月有短暂的净释放过程,其后呈富集状态;K元素浓度先升高后降低,在放置的前3个月净释放,随后呈富集状态。竹林凋落叶的养分含量对凋落物养分归还有重要影响,尤其是C/N和P可能作为竹林凋落... 相似文献
10.
Evaluation of macrofaunal effects on leaf litter breakdown rates in aquatic and terrestrial habitats
Abstract Decomposition of the organic matter is a key process in the functioning of aquatic and terrestrial ecosystems, although different factors influence processing rates between and within these habitats. Most patterns were described for temperate regions, with fewer studies in tropical, warmer sites. In this study, we carried out a factorial experiment to compare processing rates of mixed species of leaf litter between terrestrial and aquatic habitats at a tropical site, using ?ne and coarse mesh cages to allow or prevent colonization by macroinvertebrates. The experiment was followed for 10 weeks, and loss of leaf litter mass through time was evaluated using exponential models. We found no interaction between habitat and mesh size and leaf litter breakdown rates did not differ between ?ne and coarse mesh cages, suggesting that macroinvertebrates do not influence leaf litter decomposition in either habitat at our studied site. Leaf breakdown rates were faster in aquatic than in terrestrial habitats and the magnitude of these differences were comparable to studies in temperate regions, suggesting that equivalent factors can influence between‐habitat differences detected in our study. 相似文献
11.
Leaching of soluble substances may be an important first step in leaf litter decomposition in small streams, but recent research has suggested that large leaching losses (up to 30% of initial mass in 48 h) may be an artifact created by using air-dried leaves in decomposition experiments. In laboratory experiments, we compared 3 d leaching losses from freshly fallen and air-dried senescent leaves of 27 tree species from different regions across Canada. Air-dried leaves from all species leached measurable amounts of original mass (3.6–32.8% dry mass), but leaching losses from fresh leaves (0–35%) were detectable in all but two species. Air-drying increased leaching losses in many species, but in others it reduced leaching losses or had no measurable effect. Results for leaves of the same species collected in different regions or in different years were generally similar, but species within the same genus often behaved very differently. Neither moisture content (fresh or air-dried), leaf thickness, nor cuticle thickness proved of any value as predictors of leaching losses or the effect of air-drying. The propensity of autumn-fallen leaves to leach, whether fresh or air-dried, appears to be a property of the individual tree species. 相似文献
12.
13.
14.
凋落物分解在森林生态系统养分循环及能量流动中具有十分重要的作用,为实现三倍体毛白杨纸浆林养分的科学管理,加快落叶分解,采用网袋法研究了2、4、6年生3个不同年龄的林分落叶在浅埋条件下的分解情况.结果表明:与在地表分解相比,浅埋显著促进了三倍体毛白杨落叶的分解,1年的分解率显著提高,分别为落叶在地表年分解率的130%、194%和186%;浅埋落叶分解50%所需天数分别只有地表的58%、39%和38%,而分解95%所需的天数分别只有地表的60%、38%和36%;浅埋对不同年龄林分落叶的促进程度不同. 相似文献
15.
16.
María Laura Moreno María Laura Bernaschini Natalia Prez‐Harguindeguy Angela Lomba Graciela Valladares 《Austral ecology》2020,45(1):27-34
Forest fragmentation is a component of global change, with substantial impact on biodiversity and ecosystem functioning. Despite extensive evidence of forest fragmentation effects on above‐ground ecological processes, little is understood about its below‐ground effects. Abundance and richness of leaf litter fauna can be affected by forest fragmentation, and this can have cascading effects on the decomposition process. Here, we examine how fragmentation of a subtropical dry forest affects aspects of ecosystem structure and functioning, by unravel area and edge effects on leaf litter fauna and decomposition rates and testing whether changes in abundance or richness of litter fauna mediated fragment area and edge effects on litter decomposition. We incubated litterbags filled with a common substrate, at the edge and interior of 12 fragments of Chaco Serrano forest in Central Argentina, for 180 days. We found that invertebrate abundance was higher at the forest edge but independent of fragment area, whereas decomposition declined with fragment size independently of edge or interior location. According to our results, the effect of forest size on decomposition was not mediated by changes in abundance or richness of leaf litter fauna, suggesting independent changes in ecosystem structure and functioning. 相似文献
17.
Ya‐Lin Zhang Wei‐Jun Zhang Jun‐Peng Duan Xu Pan Guo‐Fang Liu Yu‐Kun Hu Wen‐Bing Li Yue‐Ping Jiang Jian Liu Wen‐Hong Dai Yao‐Bin Song Ming Dong 《Ecology and evolution》2019,9(16):9376-9384
Allochthonous (e.g., riparian) plant litter is among the organic matter resources that are important for wetland ecosystems. A compact canopy of free‐floating vegetation on the water surface may allow for riparian litter to remain on it for a period of time before sinking to the bottom. Thus, we hypothesized that canopy of free‐floating vegetation may slow decomposition processes in wetlands. To test the hypothesis that the retention of riparian leaf litter on the free‐floating vegetation in wetlands affects their subsequent decomposition on the bottom of wetlands, a 50‐day in situ decomposition experiment was performed in a wetland pond in subtropical China, in which litter bags of single species with fine (0.5 mm) or coarse (2.0 mm) mesh sizes were placed on free‐floating vegetation (dominated by Eichhornia crassipes, Lemna minor, and Salvinia molesta) for 25 days and then moved to the pond bottom for another 25 days or remained on the pond bottom for 50 days. The leaf litter was collected from three riparian species, that is, Cinnamomum camphora, Diospyros kaki, and Phyllostachys propinqua. The retention of riparian leaf litter on free‐floating vegetation had significant negative effect on the carbon loss, marginal negative effects on the mass loss, and no effect on the nitrogen loss from leaf litter, partially supporting the hypothesis. Similarly, the mass and carbon losses from leaf litter decomposing on the pond bottom for the first 25 days of the experiment were greater than those from the litter decomposing on free‐floating vegetation. Our results highlight that in wetlands, free‐floating vegetation could play a vital role in litter decomposition, which is linked to the regulation of nutrient cycling in ecosystems. 相似文献
18.
UV-B辐射对杉木凋落叶分解的影响 总被引:2,自引:1,他引:2
采用分解袋法对自然和UV-B辐射滤减环境下的杉木凋落叶进行分解试验.结果表明:与对照相比,UV-B辐射滤减处理使杉木凋落叶的分解速率降低了69.6%(P<0.001),凋落叶中氮、磷和木质素的相对含量分别增加150%、83.3%和13.8%,抑制了钾和碳的释放.木质素光降解在杉木凋落叶分解过程中的作用不明显.UV-B辐射可以加快杉木凋落叶的分解,促进氮、磷、钾和碳的释放,以及杉木林凋落物层的营养周转速度,增加地表的碳通量,对杉木林的碳源或碳汇功能具有潜在的影响. 相似文献
19.
20.
Summary 1. Heterotrophic microorganisms are crucial for mineralising leaf litter and rendering it more palatable to leaf‐shredding invertebrates. A substantial part of leaf litter entering running waters may be buried in the streambed and thus be exposed to the constraining conditions prevailing in the hyporheic zone. The fate of this buried organic matter and particularly the role of microbial conditioning in this habitat remain largely unexplored. 2. The aim of this study was to determine how the location of leaf litter within the streambed (i.e. at the surface or buried), as well as the leaf litter burial history, may affect the leaf‐associated aquatic hyphomycete communities and therefore leaf consumption by invertebrate detritivores. We tested the hypotheses that (i) burial of leaf litter would result in lower decomposition rates associated with changes in microbial assemblages compared with leaf litter at the surface and (ii) altered microbial conditioning of buried leaf litter would lead to decreased quality and palatability to their consumers, translating into lower growth rates of detritivores. 3. These hypotheses were tested experimentally in a second‐order stream where leaf‐associated microbial communities, as well as leaf litter decomposition rates, elemental composition and toughness, were compared across controlled treatments differing by their location within the streambed. We examined the effects of the diverse conditioning treatments on decaying leaf palatability to consumers through feeding trials on three shredder taxa including a freshwater amphipod, of which we also determined the growth rate. 4. Microbial leaf litter decomposition, fungal biomass and sporulation rates were reduced when leaf litter was buried in the hyporheic zone. While the total species richness of fungal assemblages was similar among treatments, the composition of fungal assemblages was affected by leaf litter burial in sediment. 5. Leaf litter burial markedly affected the food quality (especially P content) of leaf material, probably due to the changes in microbial conditioning. Leaf litter palatability to shredders was highest for leaves exposed at the sediment surface and tended to be negatively related to leaf litter toughness and C/P ratio. In addition, burial of leaf litter led to lower amphipod growth rates, which were positively correlated with leaf litter P content. 6. These results emphasise the importance of leaf colonisation by aquatic fungi in the hyporheic zone of headwater streams, where fungal conditioning of leaf litter appears particularly critical for nutrient and energy transfer to higher trophic levels. 相似文献