首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the expression of the protein tyrosine kinase pp60v-src on endothelin- and thrombin-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) production and calcium responses were investigated in Rat-1 fibroblasts. The ability of endothelin-1 to induce the accumulation of these second messengers was dramatically amplified by v-src transformation, with 6- and 3-fold enhancements of the peak Ins(1,4,5)P3 and peak calcium responses, respectively. In contrast, thrombin-dependent responses were slightly reduced following v-src transformation, demonstrating that the augmentation of endothelin-stimulated signal transduction is a selective effect. The magnitude of the stimulated accumulation of Ins(1,4,5)P3 presumably depends upon both the functional activation of phospholipase C to produce Ins(1,4,5)P3, and the activity of the enzymes that metabolize Ins(1,4,5)P3. Although the metabolism of Ins(1,4,5)P3 was strikingly altered by expression of pp60v-src, with a bias towards the production of higher inositol polyphosphates that is consistent with an activated Ins(1,4,5)P3 3-kinase, this change could not account for the marked increase in endothelin-stimulated signaling induced by v-src transformation. This suggests that an effect of pp60v-src is expressed at the level of the plasma membrane, through an interaction with one or more components in the receptor/guanine nucleotide binding protein (G protein)/phospholipase C system that transduces the endothelin signal into Ins(1,4,5)P3 production. Preparation of membranes from normal and v-src-transformed cells showed that, while there was no change in the number of high-affinity endothelin binding sites, the release of Ins(1,4,5)P3 in response to guanine nucleotides and endothelin-1 was significantly increased following v-src transformation. In contrast, the Ins(1,4,5)P3 responses to thrombin and high Ca2+ concentrations were unaffected by transformation. Thus the selective interactions within the G protein system that couples the endothelin receptor to phospholipase C are potential sites at which the v-src transformation process may act to amplify endothelin-dependent Ins(1,4,5)P3 production.  相似文献   

2.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

3.
Factors underlying the transience of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] accumulation following muscarinic stimulation of RINm5F cells were examined. Transience was not due to a protein kinase C-mediated stimulation of Ins(1,4,5)P3 dephosphorylation, since pretreatment of cells with tetradecanoyl-phorbol acetate (TPA) did not alter the rate of this conversion. However, preincubation with TPA did inhibit carbamoylcholine-stimulated Ins(1,4,5)P3 formation. In permeabilized cells, the conversion of Ins(1,4,5)P3 to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was slightly enhanced in the presence of TPA or cyclic AMP, but much more markedly by raising the Ca2+ concentration from 10(-7) M to 10(-6) or 10(-5) M. In intact cells the most rapid rate of accumulation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 occurred in the first 2 s following stimulation, whereas the levels of inositol 1,4-bisphosphate were not increased until after 5 s. This suggests that Ins(1,4,5)P3 kinase is chiefly responsible for the early disposal of Ins(1,4,5)P3 following cellular stimulation. The results are consistent with the proposal that the transient accumulation of Ins(1,4,5)P3 is due both to its enhanced metabolism via the Ca2+-calmodulin-sensitive Ins(1,4,5)P3 kinase, as well as a down-regulation of phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

4.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase catalyzes the production of D-myo-inositol 1,3,4,5-tetrakisphosphate from the second messenger Ins (1,4,5)P3. Transient and okadaic acid-sensitive activation of Ins(1,4,5)P3 3-kinase by 8-10-fold is observed in homogenates prepared from rat cortical astrocytes after incubation with either carbachol or UTP. 12-O-Tetradecanoylphorbol-13-acetate provokes the activation of Ins(1,4,5)P3 3-kinase by 2-fold in both cell systems. The kinase was purified by calmodulin-Sepharose from the two cell systems. Enzyme activity corresponding to the silver-stained 88-kDa protein could be regenerated after SDS-polyacrylamide gel electrophoresis. Antibodies to two distinct peptides chosen in the primary structure of human Ins(1,4,5)P3 3-kinase B recognized the astrocytic native isoform. In [32P]orthophosphate-preincubated cells, a major phosphorylated 88-kDa enzyme could be purified and identified in cells in response to receptor activation or 12-O-tetradecanoylphorbol-13-acetate treatment. Calmodulin kinase II inhibitors (i.e. KN-93 and KN-62) and a protein kinase C inhibitor (i.e. calphostin C) prevented the phosphorylation of the 88-kDa isoenzyme. In addition to enzyme activation, a redistribution of Ins(1,4,5)P3 3-kinase from soluble to particulate fraction of astrocytes was observed. In vitro phosphorylation of the purified enzyme by calmodulin kinase II and protein kinase C added together resulted in a maximal 60-70-fold activation.  相似文献   

5.
Vasoactive intestinal contractor (VIC) caused a series of biochemical events, including the temporal biphasic accumulation of 1,2-diacylglycerol (DAG), transient formation of Ins(1,4,5)P3, and increase in intracellular free Ca2+ [( Ca2+]i) in neuroblastoma NG108-15 cells. In these cellular responses, VIC was found to be much more potent in NG108-15 cells than in cultured rat vascular smooth-muscle cells. The single cell [Ca2+]i assay revealed that in the presence of nifedipine (1 microM) or EGTA (1 mM), the peak [Ca2+]i declined more rapidly to the resting level in VIC-stimulated NG108-15 cells, indicating that the receptor-mediated intracellular Ca2+ mobilization is followed by Ca2+ influx through the nifedipine-sensitive Ca2+ channel. Pretreatment with pertussis toxin only partially decreased Ins(1,4,5)P3 generation as well as the [Ca2+]i transient induced by VIC, whereas these events induced by endothelin-1 were not affected by the toxin, suggesting involvement of distinct GTP-binding proteins. The VIC-induced transient Ins(1,4,5)P3 formation coincident with the first early peak of DAG formation suggested that PtdIns(4,5)P2 is a principal source of the first DAG increase. Labelling studies with [3H]myristate, [14C]palmitate and [3H]choline indicated that in neuroblastoma cells phosphatidylcholine (PtdCho) was hydrolysed by a phospholipase C to cause the second sustained DAG increase. Down-regulation of protein kinase C (PKC) by prolonged pretreatment with phorbol ester markedly prevented the VIC-induced delayed DAG accumulation. Furthermore, chelation of intracellular CA2+ completely abolished the second sustained phase of DAG production. These findings suggest that PtdCho hydrolysis is responsible for the sustained production of DAG and is dependent on both Ca2+ and PKC.  相似文献   

6.
The action of carbamoylcholine (Cchol), NaF and other agonists on the generation of inositol phosphates (IPs) was studied in dog thyroid slices prelabelled with myo-[2-3H]inositol. The stimulation by Cchol (0.1 microM-0.1 mM) of IPs accumulation through activation of a muscarinic receptor [Graff, Mockel, Laurent, Erneux & Dumont (1987) FEBS Lett. 210, 204-210] was pertussis- and cholera-toxin insensitive. Ins(1,4,5)P3, Ins(1,3,4)P3 and InsP4 were generated. NaF (5-20 mM) also increased IPs generation (Graff et al., 1987); this effect was potentiated by AlCl3 (10 microM) and unaffected by pertussis toxin. Although phorbol dibutyrate (5 microM) abolished the cholinergic stimulation of IPs generation (Graff et al., 1987), it did not affect the fluoride-induced response. Cchol and NaF did not require extracellular Ca2+ to exert their effect, and neither KCl-induced membrane depolarization nor ionophore A23187 (10 microM) had any influence on basal IPs levels, or on cholinergic stimulation. However, more stringent Ca2+ depletion with EGTA (0.1 or 1 mM) decreased basal IPs levels as well as the amplitude of the stimulation by Cchol without abolishing it. Dibutyryl cyclic AMP, forskolin, cholera toxin and prostaglandin E1 had no effect on basal IPs levels and did not decrease the response to Cchol. Iodide (4 or 40 microM) also strongly decreased the cholinergic action on IPs, this inhibition being relieved by methimazole (1 mM). Our data suggest that Cchol activates a phospholipase C hydrolysing PtdIns(4,5)P2 in the dog thyroid cell in a cyclic AMP-independent manner. This activation requires no extracellular Ca2+ and depends on a GTP-binding protein insensitive to both cholera toxin and requires no extracellular Ca2+ and depends on a GTP-binding protein insensitive to both cholera toxin and pertussis toxin. The data are consistent with a rapid metabolism of Ins(1,4,5)P3 to Ins(1,3,4)P3 via the Ins(1,4,5)P3 3-kinase pathway, followed by dephosphorylation by a 5-phosphomonoesterase. Indeed, a Ca2+-sensitive InsP3 3-kinase activity was demonstrated in tissue homogenate. Stimulation of protein kinase C and an organified form of iodine inhibit the Cchol-induced IPs generation. The negative feedback of activated protein kinase C could be exerted at the level of the receptor or of the receptor-G-protein interaction.  相似文献   

7.
Activation of the cAMP messenger system was found to cause specific changes in angiotensin-II (All)-induced inositol phosphate production and metabolism in bovine adrenal glomerulosa cells. Pretreatment of [3H]inositol-labeled glomerulosa cells with 8-bromo-cAMP (8Br-cAMP) caused both short and long term changes in the inositol phosphate response to stimulation by All. Exposure to 8Br-cAMP initially caused dose-dependent enhancement (ED50 = 0.7 microM) of the stimulatory action of All (50 nM; 10 min) on the formation of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and its immediate metabolites. This effect of 8Br-cAMP was also observed in permeabilized [3H]inositol-labeled glomerulosa cells in which degradation of Ins(1,4,5)P3 was inhibited, consistent with increased activity of phospholipase-C. Continued exposure to 8Br-cAMP for 5-16 h caused selective enhancement of the All-induced increases in D-myo-inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4] and myo-inositol 1,4,5,6-tetrakisphosphate. The long term effect of 8Br-cAMP on the 6-phosphorylated InsP4 isomers, but not the initial enhancement of Ins(1,4,5)P3 formation, was inhibited by cycloheximide. The characteristic biphasic kinetics of All-induced Ins(1,4,5)P3 formation were also changed by prolonged treatment with 8Br-cAMP to a monophasic response in which Ins(1,4,5)P3 increased rapidly and remained elevated during All stimulation. In permeabilized glomerulosa cells treated with 8Br-cAMP for 16 h, the conversion of D-myo-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] to Ins(1,3,4,6)P4 was consistently increased, whereas dephosphorylation of Ins(1,4,5)P3 to D-myo-inositol 1,4-bisphosphate and of D-myo-inositol 1,3,4,5-tetrakisphosphate to Ins(1,3,4)P3, was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We measured the masses of inositol 1,4,5 trisphosphate (Ins(1,4,5)P3) and diacylglycerol (DAG) in hepatocytes in response to both epidermal growth factor (EGF) and vasopressin. EGF at 25 nM did not alter Ins(1,4,5)P3 content of hepatocytes. However, the combination of 100 nM EGF concentration and incubation with lithium did increase Ins(1,4,5)P3 content. This increase was only one tenth of that elicited by vasopressin in parallel incubations. This finding resolves a controversy concerning the ability of EGF to increase Ins(1,4,5)P3 in hepatocytes, and argues against a role for phosphoinositide hydrolysis in EGF action in hepatocytes. Both EGF and vasopressin caused a rapid (30 s) increase in DAG content. A delayed increase in DAG content, that was maximal after several minutes, was observed only for vasopressin. The rapid increase in DAG content implies an activation of protein kinase C for both EGF and vasopressin.  相似文献   

9.
In previous studies it has been shown that both bradykinin and histamine increase the formation of 3H-labeled inositol phosphates in adrenal chromaffin cells prelabelled with [3H]inositol and that both these agonists stimulate release of catecholamines by a mechanism dependent on extracellular calcium. Here, we have used mass assays of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to investigate changes in levels of these two candidates as second messengers in response to stimulation with bradykinin and histamine. Bradykinin increased the mass of Ins(1,3,4,5)P4 despite the failure in earlier studies with [3H]inositol-labelled cells to observe a bradykinin-mediated increase in content of [3H]InsP4. Bradykinin elicited a very rapid increase in level of Ins(1,4,5)P3, which was maximal at 5-10 s and then rapidly decreased to a small but sustained elevation at 2 min. The bradykinin-elicited Ins(1,3,4,5)P4 response increased to a maximum at 30-60 s and at 2 min was still elevated severalfold above basal levels. Histamine, which produced a larger overall total inositol phosphate response in [3H]inositol-loaded cells, produced significantly smaller Ins(1,4,5)P3 and Ins(1,3,4,5)P4 responses compared with bradykinin. The bradykinin stimulation of Ins(1,4,5)P3 accumulation was partially dependent on a high (1.8 mM) extracellular Ca2+ concentration, whereas the Ins(1,3,4,5)P4 response was almost completely lost when the extracellular Ca2+ concentration was reduced to 100 nM. Changes in the inositol polyphosphate second messengers are compared with the time course of bradykinin-stimulated increases in free intracellular Ca2+ concentrations and noradrenaline release.  相似文献   

10.
Changes in the cellular content of 1,2-diacylglycerol (DAG) in isolated rat pancreatic acini in response to agonist stimulation were studied using a sensitive mass assay. When acini were stimulated by 10 nM COOH-terminal cholecystokinin-octapeptide (CCK8), the increase in DAG was biphasic, consisting of an early peak at 5 s and a second, larger, gradual increase that was maximal by 15 min. The basal level of DAG in acini was 1.04 nmol/mg of protein, which was increased to 1.24 nmol/mg of protein at 5 s and 2.76 nmol/mg of protein at 30 min. In comparison, the increase in DAG stimulated by 30 pM CCK8, a submaximal concentration for amylase release, was monophasic, increasing without an early peak but sustained to 60 min. Other Ca2+-mobilizing secretagogues such as carbamylcholine and bombesin increased DAG in acini, whereas vasoactive intestinal peptide, which acts to increase cAMP, had no effect. Phorbol ester and Ca2+ ionophore also stimulated DAG production. Analysis of the mass level of inositol 1,4,5-trisphosphate (1,4,5-IP3) showed that the generation of 1,4,5-IP3 stimulated by 10 nM CCK8 peaked at 5 s, a finding consistent with the early peak of DAG. The basal level was 4.7 pmol/mg of protein, which was increased to 144.6 pmol/mg of protein at 5 s by 10 nM CCK8. The levels of 1,4,5-IP3 then returned toward basal in contrast to the gradual and sustained increase of DAG. The dose dependencies of 1,4,5-IP3 and DAG formation at 5 s with respect to CCK8 were almost identical. This suggests that phosphatidylinositol 4,5-bisphosphate hydrolysis is a major source of the early increase in DAG but not of the sustained increase in DAG. Therefore, a possible contribution of phosphatidylcholine hydrolysis to DAG formation was examined utilizing acini prelabeled with [3H]choline. CCK8 (1 nM) maximally increased [3H]choline metabolite release by 133% of control at 30 min. Separation of these metabolites by thin layer chromatography showed that the products of CCK8-stimulated release were almost entirely phosphorylcholine, indicating the activation of a phospholipase C specific for phosphatidylcholine. By comparison, 1 nM CCK8 stimulated [3H]ethanolamine metabolite release from [3H]ethanolamine-labeled acini by only 22% of control. These data suggest that CCK stimulates both phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine hydrolysis; the latter may contribute to the sustained generation of DAG and hence the maintained activation of protein kinase C.  相似文献   

11.
Although activation of muscarinic cholinergic receptors on 1321N1 human astrocytoma cells results in a linear accumulation of inositol phosphates for up to 60 min in the presence of LiCl [Masters, Quinn & Brown (1985) Mol. Pharmacol. 27, 325-332], activation of H1-histamine receptors resulted in an increase in total inositol phosphate formation that was maintained for less than 5 min. The effects of stimulation of these two receptors on accumulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] were also examined. Incubation of 1321N1 cells with carbachol resulted in a rapid accumulation of all three inositol phosphates, reaching a maximum within 30 s; this elevated value was maintained for up to 60 min. The rate of disappearance of Ins(1,3,4)P3 from carbachol-treated cells after the addition of atropine paralleled or exceeded the rate of disappearance of Ins(1,4,5)P3. Although the initial rates of accumulation of Ins(1,4,5)P3, Ins(1,3,4)P3 and Ins(1,3,4,5)P4 in the presence of histamine were similar to that observed with carbachol, the amounts of these inositol phosphates had returned to control values within 5 min after the addition of histamine. The results indicate that, although the acute effects of muscarinic receptor and H1-histamine receptor stimulation on phosphoinositide hydrolysis are very similar, the histamine receptor is desensitized rapidly, whereas the muscarinic receptor is not. This effect on histamine-receptor function is apparently homologous, since preincubation of 1321N1 cells with histamine did not decrease the subsequent response to carbachol.  相似文献   

12.
The specific binding of [3H] and [32P]Ins(1,4,5)P3 to a particulate preparation of bovine adrenal cortex has been used as a radioreceptor assay to determine the concentration of Ins(1,4,5)P3 in agonist- and depolarization-stimulated rat cerebral cortex slices. The resting concentration of Ins(1,4,5)P3 in slices that had been preincubated in a physiological medium was 18.8 +/- 2.6 pmol/mg prot. Carbachol evoked a rapid and dose-related increase in the concentration of Ins(1,4,5)P3. Maximal stimulation (80%) was already seen at the earliest point (10 sec) examined and was maintained for at least 5 min. The EC50 for carbachol was 75 +/- 17 microM and the response was totally suppressed by the muscarinic antagonist atropine. A direct comparison in the same slices was made between mass determinations and [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 accumulation determined by h.p.l.c. Although an identical time course was observed for cold and radiolabelled Ins(1,4,5)P3, the greater stimulation of [3H]Ins(1,4,5)P3 may indicate changes in specific radioactivity. Of a variety of other receptor agonists studied, only the glutamate receptor agonist quisqualate, and noradrenaline significantly increased the mass of Ins(1,4,5)P3 in cerebral cortical slices. However, depolarizing concentrations of K+ were as effective as carbachol at elevating this second messenger.  相似文献   

13.
Inositol phosphate (InsP) responses to receptor activation are assumed to involve phospholipase C cleavage of phosphatidylinositol 4,5-bisphosphate to generate Ins(1,4,5)P(3). However, in [(3)H]inositol-labeled rat neonatal cardiomyocytes (NCM) both initial and sustained [(3)H]InsP responses to alpha(1)-adrenergic receptor stimulation with norepinephrine (100 microM) were insensitive to the phosphatidylinositol 4,5-bisphosphate-binding agent neomycin (5 mM). Introduction of 300 microM unlabeled Ins(1,4, 5)P(3) into guanosine 5'-3-O-(thio)triphosphate (GTPgammaS)-stimulated, permeabilized [(3)H]inositol-labeled NCM increased [(3)H]Ins(1,4,5)P(3) slightly but did not significantly reduce levels of its metabolites [(3)H]Ins(1,4)P(2) and [(3)H]Ins(4)P, suggesting that these [(3)H]InsPs are not formed principally from [(3)H]Ins(1,4,5)P(3). In contrast, the calcium ionophore A23187 (10 microM) provoked [(3)H]InsP responses in intact NCM which were sensitive to neomycin, and elevation of free calcium in permeabilized NCM led to [(3)H]InsP responses characterized by marked increases in [(3)H]Ins(1,4,5)P(3) (2.9 +/- 0.2% of total [(3)H]InsPs after 20 min of high Ca(2+) treatment in comparison to 0. 21 +/- 0.05% of total [(3)H]InsPs accumulated after 20 min of GTPgammaS stimulation). These data provide evidence that Ins(1,4, 5)P(3) generation is not a major contributor to G protein-coupled InsP responses in NCM, but that substantial Ins(1,4,5)P(3) generation occurs under conditions of Ca(2+) overload. Thus in NCM, Ca(2+)-induced Ins(1,4,5)P(3) generation has the potential to worsen Ca(2+) overload and thereby aggravate Ca(2+)-induced electrophysiological perturbations.  相似文献   

14.
We have examined regulation by protein kinase C (Ca2+/phospholipid-dependent enzyme) of thrombin-induced inositol polyphosphate accumulation in human platelets. When platelets are exposed to thrombin for 10 s, the protein kinase C inhibitor staurosporine causes inositol phosphate elevations over control values of 2.7-fold (inositol 1,4,5-trisphosphate (Ins(1,4,5)P3], 1.9-fold (inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4], and 1.2-fold (inositol 1,3,4-trisphosphate). In the same period, phosphatidic acid and diacylglycerol are unaffected. The myosin light chain kinase inhibitor ML-7 has no effect on inositol phosphate accumulations. Staurosporine does not inhibit Ins(1,4,5)P3 3-kinase and 5-phosphomonoesterase activities in saponin-permeabilized platelets incubated with exogenous Ins(1,4,5)P3 unless the platelets have been exposed to thrombin and protein kinase C is consequently activated. The protein kinase C agonist beta-phorbol 12,13-dibutyrate increases the Vmax of the 3-kinase 1.8-fold, with little effect on Km. Our results provide strong evidence for a role for protein kinase C in regulating inositol phosphate levels in thrombin-activated platelets. We propose that endogenously activated protein kinase C removes Ins(1,4,5)P3 by stimulating both 5-phosphomonoesterase and Ins(1,4,5)P3 3-kinase. Initial activation of phospholipase C does not appear to be affected by such protein kinase C. Inhibition of protein kinase C by staurosporine decreases 5-phosphomonoesterase activity. The resulting elevated Ins(1,4,5)P3, as substrate for Ins(1,4,5)P3 3-kinase, promotes production of Ins(1,3,4,5)P4, which also may accumulate through decreased 5-phosphomonoesterase activity and elevated Ca2+ levels. These factors apparently counteract the inhibitory effect on 3-kinase, yielding a net increase in Ins(1,3,4,5)P4.  相似文献   

15.
A method for the rapid and quantitative separation of glycerophosphocholine, choline phosphate and choline upon ion-exchange columns is described. The method has been utilized to examine the stimulation of phosphatidylcholine breakdown in quiescent Swiss 3T3 cells in response to bombesin and 12-O-tetradecanoylphorbol 13-acetate (TPA). The stimulated generation of choline is shown to precede that of choline phosphate, with no effect upon glycerophosphocholine levels; but was attenuated in cells in which protein kinase C activity was down-regulated. The results thus suggest that stimulation of the cells with either bombesin or TPA activates phospholipase D-catalysed phosphatidylcholine breakdown by a common mechanism involving the activation of protein kinase C.  相似文献   

16.
The Ca2(+)-mobilizing second messenger D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is converted to the putative messenger D-myo-inositol 1,3,4,5-tetrakisphosphate by Ins(1,4,5)P3 3-kinase. We found that cAMP-dependent protein kinase and protein kinase C phosphorylate, and thereby modulate, the activity of Ins(1,4,5)P3 3-kinase. cAMP-dependent kinase introduced a stoichiometric amount of phosphate at serine 109 of the 53-kDa polypeptide and caused a 1.8-fold increase in Vmax, whereas the protein kinase C-dependent phosphorylation reduced the Vmax to one-fourth of that of the unphosphorylated enzyme. Upon prolonged incubation, protein kinase C introduced phosphate at multiple sites in Ins(1,4,5)P3 3-kinase, and the resulting inactivation of the enzyme appeared to be well-correlated with the simultaneous phosphorylation of two major sites, serine 109 and serine 175. The Km for Ins(1,4,5)P3 was not affected significantly after phosphorylation by either protein kinase. We propose, therefore, that the phosphorylation of Ins(1,4,5)P3 3-kinase by cAMP-dependent kinase and protein kinase C constitutes mechanisms of cross-talk between cellular signaling pathways that use various second messengers such as inositol phosphates, diacylglycerol, Ca2+, and cAMP.  相似文献   

17.
The ability of lithium to interfere with phosphoinositide metabolism in rat cerebral cortex slices has been examined by monitoring the accumulation of CMP-phosphatidate (CMP-PtdOH) and the reduction in Ins(1,4,5)P3 and Ins(1,3,4,5)P4 levels. A small accumulation of [14C]CMP-PtdOH was seen in slices prelabelled with [14C]cytidine and stimulated with carbachol (1 mM) or Li+ (1 mM). However, simultaneous addition of both agents for 30 min produced a 22-fold accumulation, with Li+ producing a half-maximal effect at a concentration of 0.61 +/- 0.19 mM. Kinetic studies revealed that the effects of carbachol and Li+ on CMP-PtdOH accumulation occurred with no initial lag apparent under these conditions and that preincubation with myo-inositol (10 or 30 mM) dramatically attenuated CMP-PtdOH accumulation. myo-Inositol could also attenuate the rate of accumulation of CMP-PtdOH when added 20 min after carbachol and Li+; these effects were not observed when equimolar concentrations of scyllo-inositol were added. Use of specific radioreceptor assays allowed the mass accumulations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 to be monitored. Following a lag of 5-10 min, Li+ resulted in a marked reduction in the accumulation of both inositol polyphosphates resulting from muscarinic-cholinergic stimulation. Preincubation of cerebral cortex slices with myo- (but not scyllo-) inositol delayed, but did not prevent, the reduction in the accumulation of Ins(1,4,5)P3 or Ins(1,3,4,5)P4. The results suggest that cerebral cortex, at least in vitro, is very sensitive to myo-inositol depletion under conditions of muscarinic receptor stimulation. The relationship of such depletion to the generation of inositol polyphosphate second messengers is discussed.  相似文献   

18.
When segments of rat tail artery were labeled with [3H]inositol and then stimulated with norepinephrine (NE), the inositol phosphates produced were primarily IP and IP2, together with a small but significant amount of Ins(1,4,5)P3 and a very small amount of Ins(1,3,4,5)P4. It has been unclear in many studies whether or not the relatively large levels of IP and IP2 produced in [3H]inositol-labeled tissue represent indirect products of phosphatidyl inositol(4,5)bis phosphate breakdown (through Ins(1,4,5)P3) or direct products of phosphatidyl inositol 4 monophosphate and phosphatidyl inositol breakdown. In order to answer this question tail artery segments were prelabeled with [3H]inositol and then permeabilized with beta escin and stimulated with norepinephrine and GTP gamma S, so that increases in IP, IP2, and Ins(1,4,5)P3 were still observed. If these permeable segments were stimulated with agonist in the presence of compounds known to inhibit Ins(1,4,5)P3 5-phosphatase, such as glucose 6P, (2,3)diphosphoglycerate, or Ins(1,4,5)P3, the levels of labeled Ins(1,4,5)P3 and labeled IP2 were increased, while the level of stimulated labeled IP was unchanged. This indicated that some of the IP2 and IP formed in these cells was produced from PIP2 but that some of these compounds might be formed from PIP or PI. When the isomers of inositol monophosphate, Ins 1P and Ins 4P, were separated by HPLC, it was shown that after prelabeled tail artery was stimulated by norepinephrine for periods of 1-2 min, the predominant isomer formed was Ins 4P, indicating either PIP2 or PIP as the source. However, after 5-20 min stimulation, both Ins 1P and Ins 4P were formed in equal amounts, suggesting that during sustained stimulation of smooth muscle PI itself was broken down directly. Therefore it appears that within 1-2 min of norepinephrine addition to vascular smooth muscle the bulk of the IP and IP2 produced are derived from PIP2 via IP3, while after 20 min of norepinephrine treatment much of the IP comes directly from PI. This suggests that the regulation of PLC in this tissue is more complicated than has been previously believed.  相似文献   

19.
The proposed Ca(2+)-signaling actions of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), formed by phosphorylation of the primary Ca(2+)-mobilizing messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), were analyzed in NIH 3T3 and CCL39 fibroblasts transfected with rat brain Ins(1,4,5)P3 3-kinase. In such kinase-transfected cells, the conversion of Ins(1,4,5)P3 to Ins(1,3,4,5)P4 during agonist stimulation was greatly increased, with a concomitant reduction in Ins(1,4,5)P3 levels and attenuation of both the cytoplasmic Ca2+ increase and the Ca2+ influx response. This reduction in Ca2+ signaling was observed during activation of receptors coupled to guanine nucleotide-binding proteins (thrombin and bradykinin), as well as with those possessing tyrosine kinase activity. Single-cell Ca2+ measurements in CCL39 cells revealed that the smaller averaged Ca2+ response of enzyme-transfected cells was due to a marked increase in the number of cells expressing small and slow Ca2+ increases, in contrast to the predominantly large and rapid Ca2+ responses of vector-transfected controls. There was no evidence that high Ins(1,3,4,5)P4 levels promote Ca2+ mobilization, Ca2+ entry, or Ca2+ sequestration. These data indicate that Ins(1,4,5)P3 is the major determinant of the agonist-induced Ca2+ signal in fibroblasts and that Ins(1,3,4,5)P4 does not appear to contribute significantly to this process. Instead, Ins(1,4,5)P3 3-kinase may serve as a negative regulator of the Ca(2+)-phosphoinositide signal transduction mechanism.  相似文献   

20.
The dynamics of inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) production during periods of G-protein-coupled receptor-mediated Ca2+ oscillations have been investigated using the pleckstrin homology (PH) domain of phospholipase C (PLC) delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). Activation of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed in the same Chinese hamster ovary cell indicates that Ca2+ responses to these G-protein-coupled receptors are stimulus strength-dependent. Thus, activation of alpha1B receptors produced transient base-line Ca2+ oscillations, sinusoidal Ca2+ oscillations, and then a steady-state plateau level of Ca2+ as the level of agonist stimulation increased. Activation of M3 receptors, which have a higher coupling efficiency than alpha1B receptors, produced a sustained increase in intracellular Ca2+ even at low levels of agonist stimulation. Confocal imaging of eGFP-PHPLCdelta1 visualized periodic increases in Ins(1,4,5)P3 production underlying the base-line Ca2+ oscillations. Ins(1,4,5)P3 oscillations were blocked by thapsigargin but not by protein kinase C down-regulation. The net effect of increasing intracellular Ca2+ was stimulatory to Ins(1,4,5)P3 production, and dual imaging experiments indicated that receptor-mediated Ins(1,4,5)P3 production was sensitive to changes in intracellular Ca2+ between basal and approximately 200 nM. Together, these data suggest that alpha1B receptor-mediated Ins(1,4,5)P3 oscillations result from a positive feedback effect of Ca2+ onto phospholipase C. The mechanisms underlying alpha1B receptor-mediated Ca2+ responses are therefore different from those for the metabotropic glutamate receptor 5a, where Ins(1,4,5)P3 oscillations are the primary driving force for oscillatory Ca2+ responses (Nash, M. S., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (2001) Nature 413, 381-382). For alpha1B receptors the Ca2+-dependent Ins(1,4,5)P3 production may serve to augment the existing regenerative Ca2+-induced Ca2+-release process; however, the sensitivity to Ca2+ feedback is such that only transient base-line Ca2+ spikes may be capable of causing Ins(1,4,5)P3 oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号