首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anestrous lighthorse mares were treated in December with dihydrotestosterone (DHT; 150 micrograms/kg of body weight), progesterone (P; 164 micrograms/kg), both DHT and P (DHT+P), testosterone (T; 150 micrograms/kg), or vehicle (n = 4/group). Daily blood sampling was started on Day 1, and on Day 4 all mares were administered a pretreatment injection of gonadotropin-releasing hormone (GnRH) and were bled frequently to characterize the responses of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. Treatment injections were given on Day 4 and then daily through Day 17. On Day 18, all mares were again administered GnRH and were bled frequently. Treatment of mares with DHT, P, or T increased (p less than 0.01) plasma concentrations of these steroids to approximately 1.5 ng/ml during the last 10 days of treatment. There was no effect (p greater than 0.10) of treatment on LH or FSH concentrations in daily blood samples. Relative to the pretreatment GnRH injection, mares treated with T or DHT+P secreted approximately 65% more (p less than 0.01) FSH in response to the post-treatment GnRH injection; FSH response to the second GnRH injection was not altered (p greater than 0.10) in control mares or in DHT- or P-treated mares. There was no effect of any steroid treatment on LH secretion after administration of GnRH (p greater than 0.10). Averaged over all mares, approximately 94 times more FSH than LH was secreted in response to injection of GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) to determine the relative importance of this hypothalamic hormone in the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Five mares immunized against the conjugation protein served as controls. Mares were initially immunized in November and received secondary immunizations 4 wk later, and then at 6-wk intervals until ovariectomy in June. All mares immunized against GnRH exhibited an increase (p less than 0.01) in the binding of tritiated GnRH by plasma, an indication that antibodies against this hormone had been elicited. Concentrations of LH, FSH and progesterone in weekly blood samples were lower (p less than 0.05) in GnRH-immunized mares than in controls after approximately 4 mo of immunization. However, the LH concentrations were affected to a greater degree than were FSH concentrations. All five control mares exhibited normal cycles of estrus and diestrus in spring, whereas no GnRH-immunized mare exhibited cyclic displays of estrus up to ovariectomy. All mares were injected intravenously with a GnRH analog (which cross-reacted less than 0.1% with the anti-GnRH antibodies) in May, after all control mares had displayed normal estrous cycles, to characterize the response of LH and FSH in these mares; two days later, the mares were injected with GnRH. The LH response to the analog, which was assessed by net area under the curve, was lower (p less than 0.01) by approximately 99% in mares immunized against GnRH than in control mares. In contrast, the FSH response to the analog was similar for both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Seasonal changes in the hypothalamic-hypophyseal axis were investigated using tissue from 49 light-horse mares, of mixed breeding. Hypothalamic and pituitary tissues were collected at 5 intervals throughout the years 1981 and 1982, representing midbreeding season (July, n = 10), transition out of the breeding season (October, n = 11), midanestrus (December, n = 8), transition into the breeding season (March, n = 10), and again in the following midbreeding season (July, n = 10). The hypothalamic region was dissected into preoptic area, body and median eminence. Gonadotropin-releasing hormone (GnRH) was extracted from hypothalamic samples with methanol-formic acid and quantified by radioimmunoassay. The anterior pituitary was homogenized and receptors for GnRH were quantified in a crude membrane fraction. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in the resulting supernatant. Content of GnRH in each of the 3 hypothalamic areas varied with season (P less than 0.01) and was lowest during midanestrus (P less than 0.05). There was no effect of season (P greater than 0.01) on either concentration or total number of receptors for GnRH, or concentration of FSH in the anterior pituitary. Concentrations of LH in the anterior pituitary varied with season (P less than 0.001). Means (+/- SEM) for the 5 collection times were 15.5 +/- 2.7, 9.7 +/- 2.4, 2.3 +/- 0.5, 2.7 +/- 0.4 and 11.7 +/- 1.5 microgram LH/mg anterior pituitary, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The regulation of rat luteinizing hormone (rLH) bioactivity was studied in an in vitro system using isolated pituitaries from male rats. Stored and released rLH was evaluated in terms of mass (I-LH), bioactivity (B-LH), mobility in nonequilibrium pH gradient electrophoresis, and mannose and sulfate incorporation either in the presence or absence of gonadotropin-releasing hormone (GnRH). GnRH increased the biological potency of stored and released rLH. The pituitary content revealed seven I-LH species (pH 7.2, 7.8, 8.5, 9.0, 9.1, 9.3, and 9.7) and five B-LH species (pH 8.5, 9.0, 9.2, 9.4, and 9.7). The major I-LH and B-LH peaks were at pH 9.0 and 9.2, respectively. I-LH peaks at pH 7.2 and 7.8 are devoid of bioactivity; at these pH values, free rLH subunits are detectable. GnRH increases the amount of both I-LH and B-LH material secreted into the medium, and the major component migrates at pH 8.5 and is probably the alpha beta dimer. [3H]Mannose and [35S]sulfate can be incorporated into stored and released rLH (pH 7.2, 7.8, 9.0, 9.1, and 9.3 and 7.2, 7.8, 8.5, and 9.0, respectively). GnRH decreases [2-3H]mannose incorporation into secreted rLH. [35S]Sulfate was incorporated into I-LH released spontaneously into the medium; the form at pH 7.2 has no biological activity and is probably the free alpha subunit. GnRH decreases the [35S]sulfate-labeled rLH content of the pituitary concomitantly with a 500% increase in [35S]sulfate-labeled released rLH, suggesting that, soon after [35S]sulfate is incorporated, sulfated rLH is released. Sulfatase action on released rLH reveals that sulfation may be related to release of rLH but that sulfate residues are not involved in the expression of rLH bioactivity. In conclusion, GnRH stimulates carbohydrate incorporation and processing of the oligosaccharide residues giving the highest biological potent rLH molecule and also increases sulfation; this step is closely related to the step limiting the appearance of LH in the medium in the absence of GnRH.  相似文献   

5.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We wish to use a gonadotrophin-releasing hormone (GnRH) antagonist in the mare as a tool for investigating the control of the oestrous cycle. The aim of this study was to test the effectiveness of the antagonist cetrorelix by testing both in vitro, using perifused equine anterior pituitary cells, and in vivo in seasonally acyclic mares. Pituitary cells were prepared and after 3-4 days incubation, loaded onto columns and given four pulses of GnRH (at 0, 30, 60 and 90 min; dose-response study). After the second GnRH pulse, infusion of cetrorelix began (0, 100, 1000 and 2000 pmol/l) and continued until the end of the experiment. To mimic luteal phase conditions, cells were pre-incubated and perifused with progesterone (25 nmol/l) and GnRH pulses given at 0, 90, 180 and 270 min. Cetrorelix (0 or 1000 pmol/l) began after the second GnRH pulse. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were measured in 5 min fractions. Both FSH and LH response areas (above baseline) after GnRH were inhibited by 1000 pmol/l cetrorelix (P < 0.01, P < 0.01, respectively) but not by 100 pmol/l cetrorelix. Similarly, in the presence of progesterone, cetrorelix inhibited the FSH (P < 0.001) and LH (P = 0.0002) response area. Seasonally acyclic mares, pre-treated for 3 days with progesterone (150 mg i.m. per day) were given cetrorelix as (i) a loading dose of 1 microg/kg then infusion at 2.2 ng/(kg min) for 90 min, (ii) a s.c. injection at 20 microg/kg, (iii) infusion at 2.2 ng/(kg min) for 48 h, and (iv) no cetrorelix (control mares). At 90 min, 6, 24 and 48 h after cetrorelix was first administered, mares were given a bolus injection of GnRH (22.2 ng/kg i.v.) and the FSH and LH responses measured. All doses of cetrorelix inhibited the FSH response at 90 min. The response was no longer suppressed at 6 h in the 90 min infusion group, showing a rapid recovery from inhibition. At 24 h, the FSH responses in the injected and 48 h infusion group were suppressed. The LH concentrations were low and showed no significant changes. This study has defined the time course and dose of cetrorelix with respect to its effect on FSH in the horse. It is concluded that cetrorelix could be used to elucidate the role of FSH in follicular development in cyclic mares.  相似文献   

7.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

8.
Plasma FSH and LH response to a synthetic GnRH analog was measured in adult ovariectomized pony mares (OVX) and in pony foals (<70 days of age) during late spring (May-June). FSH and LH responded in a similar fashion (200% increase) in the OVX mare, which is different from other reports for intact mares. There was a greater mean response to a comparable dose of GnRH in the prepubertal foal for both FSH (500%) and LH (900%) than in the OVX mare. There was a positive correlation between age and the maximum FSH response to GnRH in male and female foals. The LH response was positively correlated with age in male foals, but not in females. The response to GnRH in the prepubertal foals was consistent with the previously observed patterns of gonadotropin secretion during this age period.  相似文献   

9.
Sixteen intact cyclic mares were treated on the fourth day of estrus and then every other day for a total of six injections with 1) testosterone propionate, 2) dihydrotestosterone (DHT) benzoate, 3) estradiol (E2) benzoate or 4) safflower oil. Mares were given gonadotropin releasing hormone (GnRH) on Day 3 of estrus (pretreatment) and again 24 h after the last steroid or oil injection. Treatment with testosterone propionate resulted in a greater (P less than 0.05) follicle-stimulating hormone (FSH) response to the second injection of GnRH compared with all other treatments. Treatment with DHT benzoate also resulted in greater (P less than 0.05) FSH response to GnRH compared with control and E2 benzoate-treated mares. Testosterone propionate and E2 benzoate administration suppressed (P less than 0.05) the normal diestrous rise in FSH concentrations exhibited by the control and DHT benzoate-treated mares. Steroid treatment did not affect the luteinizing hormone (LH) response to GnRH, although testosterone propionate treatment did suppress concentrations of LH in daily blood samples during Days 3 to 6 of treatment. It is concluded that testosterone's effect on FSH after GnRH treatment observed in this and previous experiments can be attributed to two different properties of the hormone or its metabolites acting simultaneously. That is, testosterone increased the secretion of FSH in response to GnRH as did DHT (an androgenic effect). At the same time, testosterone suppressed FSH concentrations in daily blood samples in a manner identical to that of E2 benzoate (an estrogenic effect).  相似文献   

10.
Four groups of mares, representing anestrus (AN; n = 8), early transition (ET; n = 7), late transition (LT; n = 8) and estrus (EST; n = 12) were used to examine changes in the hypothalamus and anterior pituitary during the period of transition from winter anestrus into the breeding season. Mares were of mixed breeding, between the ages of 3 and 20 years, and had shown normal patterns of estrous behavior and ovulation during the breeding season previous to this experiment. Hypothalamic content of gonadotropin-releasing hormone (GnRH) and anterior pituitary content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were determined by radioimmunoassay. The number of receptors for GnRH in anterior pituitary tissue was also determined. There was no effect of stage of transition into the breeding season on receptors for GnRH or content of FSH (p greater than 0.05). Likewise, content of GnRH in the hypothalamus did not differ between the four groups (p greater than 0.05). However, pituitary content of LH increased progressively from anestrus to the breeding season (p less than 0.05). Means for the AN, ET, LT and EST groups were 1.1 +/- 0.2, 2.2 +/- 0.3, 6.3 +/- 1.4 and 15.2 +/- 1.8 micrograms LH/mg pituitary, respectively. In addition, serum concentrations of LH associated with the first ovulation of the year for 5 of the EST mares were significantly lower (p less than 0.01) than those associated with the second ovulation of the year.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To investigate the site of action of glucocorticoids in modulating secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from pituitaries of male rats, we implanted intact male rats with 250-mg pellets of cortisol (F) or cholesterol (C). Four days later, we collected and enzymatically dispersed the pituitaries. After the dispersed pituitaries had been in culture for 2 days, we treated the cells with gonadotropin-releasing hormone (GnRH) (0-150 nM) and determined the concentrations of LH and FSH in the medium after 6 h of incubation. Cells from donor animals pretreated with F secreted 30-60% more LH approximately 75% more FSH than cells from donor animals pretreated with C. This increase occurred regardless of the presence of F or C in the incubation medium in vitro. The slopes and ED50s of the GnRH dose-response curves were not altered. These data show that glucocorticoids have stimulatory effects on both LH and FSH. The inhibitory effects observed in vivo must be exerted by some mechanism that is not carried over to the in vitro model, and perhaps involve sites of action in addition to the pituitary.  相似文献   

12.
We have previously demonstrated that gonadotrophin-releasing hormone (GnRH) induces not only changes in quantity but also in quality on secreted luteinizing hormone (LH), by increasing [14C]Leu (translation) and [3H]Gal (distal glycosylation) incorporation into newly synthesized hormone. In the present report, we have further examined the GnRH-induced [3H]Gal-LH synthesis and release by treating anterior pituitary cells with polypeptide synthesis and glycosylation inhibitors (cycloheximide and tunicamycin, respectively). Pituitary cells from ovariectomized adult rats were cultured for 4 days and then incubated for different periods (0-5 h) in medium containing [14C]Leu plus [3H]Man or [14C]Leu plus [3H]Gal in the absence (basal) or presence of 10 nmol/L GnRH with or without (control) cycloheximide (1.0 and 4.0 microg/mL) or tunicamycin (0.5 and 2.0 microg/mL). At the end of each incubation period, the cells and the medium were separated and processed for DNA uptake and newly synthesized LH (labeled LH, by immunoprecipitation with a-betaLH) determinations. The velocity of synthesis and release (between 0 and 2 h, and between 2 and 5 h) was calculated by regression analysis and the statistical significance of differences was determined by the slope test. GnRH enhanced the rates of synthesis and release of [14C]Leu-, [3H]Man-, and [3H]Gal-LH to 157 and 237; 164 and 190; and 272 and 508% of basal values, respectively. Cycloheximide totally blocked synthesis and release of [14C]Leu-LH and greatly reduced those of [3H]Man-LH, resulting in the loss of cellular responsiveness to GnRH. Addition of tunicamycin to the pituitary cells inhibited the rates of synthesis and release of [3H]Man-LH which had been induced by GnRH, without altering those of [14C]Leu-LH. These findings indicate that glycosylation is not a condition for GnRH-stimulated LH translation. The GnRH-increased [3H]Gal-LH rates of synthesis and release were affected to a lesser extent by the inhibitors. Thus, GnRH stimulation of distal glycosylation can occur, albeit at a reduced rate, even though protein synthesis and glycosylation are blocked. In conclusion, the present results corroborate that GnRH stimulates the addition of galactose residues into LH molecule. This effect is not simply the consequence of stimulating LH polypeptide chain synthesis. In addition, it is shown that GnRH-increased LH translation is independent of glycosylation.  相似文献   

13.
It is known that acute ovariectomy (OVX) greatly attenuates the pituitary luteinizing hormone (LH) response to gonadotropin-releasing hormone (GnRH) in vitro. The present study evaluated possible quantitative and/or qualitative differences in the biosynthesis and secretion of LH in pituitaries from proestrous and acutely (72 h) OVX rats. Paired anterior pituitary glands were incubated for 4 h in a medium containing +/- 10 nM GnRH. Pituitary and secreted LH were measured by radioimmunoassay with differences in total LH (tissue plus medium) +/- GnRH being indicative of GnRH-stimulated LH synthesis. Qualitative changes in LH were evaluated by isoelectrofocusing (IEF). The results show that the major form of LH stored in and released from the pituitaries consisted of LH molecules with an isoelectric point (pI) in the alkaline pH range (alkaline LH), and a lesser amount (approximately 30%) of LH molecules in the acidic pH range (acidic LH). The ratio of alkaline/acidic LH observed in the pituitary and medium was similar in the proestrous and OVX groups, although the amount of alkaline and acidic LH release in response to GnRH was 2-3 times greater in the proestrous group. In both groups, the alkaline/acidic LH ratio of secreted LH was higher in the presence of GnRH than in its absence. Alkaline LH synthesis was increased by GnRH in both groups, with the response being greater in the proestrous than in the OVX group; GnRH-stimulated acidic LH synthesis was observed only in the proestrous group. In both groups, the amount of LH synthesized was about 60% of the amount released, which suggests that LH synthesis does not fully account for differences in GnRH-stimulated LH release. Treatment of pituitary extracts with neuraminidase decreased acidic LH, and proportionately increased alkaline LH. These results suggest that the quality of LH stored in and secreted from pituitaries of proestrous and OVX rats is similar, and that there is a preferential release of the major alkaline LH isoform in response to GnRH. The ovarian steroid environment, presumably estradiol, proportionately increases the amount of alkaline and acidic LH released, and differentially affects the amounts of the various isoforms synthesized in response to GnRH. The charge heterogeneity of alkaline and acidic LH may be related to the sialic acid content of the LH molecule.  相似文献   

14.
Nitric oxide (NO) synthase (NOS) has been found in the gonadotrophs and folliculo-stellate cells of the anterior pituitary. Previous observations from our laboratory suggest that NO may play a role in regulating gonadotropin secretion. Because estrogen secretion by the ovary can influence gonadotropin secretion, we investigated the hypothesis that chronic in vivo NO deficiency has a direct estrogen-independent effect on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. Chronic NO deficiency was induced by adding an NOS inhibitor, N-nitro-L-arginine (L-NNA, 0.6 g/l) to the drinking water of ovariectomized (OVX) rats. The control OVX rats were untreated. After 6-8 weeks, the animals were sacrificed, and the pituitaries were removed and perfused continuously for 4 hr in the presence of pulsatile gonadotropin-releasing hormone (GnRH, 500 ng/pulse) every 30 min. S-Nitroso-L-acetyl penicillamine (SNAP, an NO donor, 0.1 mM) or L-nitro-arginine methyl ester (L-NAME, an NOS inhibitor, 0.1 mM) was added to the media and perfusate samples were collected at 10-min intervals. GnRH-stimulated LH and FSH levels were significantly lower in pituitaries from OVX/NO-deficient pituitaries compared with pituitaries from the OVX control group. The addition of SNAP significantly decreased LH and FSH secretion by pituitaries from OVX control animals, but significantly increased their secretion by pituitaries from the OVX/NO-deficient animals. L-NAME also suppressed LH and FSH secretion by pituitaries from the OVX control animals and stimulated their release by pituitaries from the NO-deficient/OVX animals. Immunohistochemistry of frontal sections through the hypothalamus demonstrated that OVX/NO deficiency is associated with increased GnRH in the median eminence. We conclude that NO has a chronic stimulatory effect on LH and FSH release and the subsequent altered secretory responsiveness to NO agonist or antagonist is the result of chronic NO suppression.  相似文献   

15.
In mares, the amount of gonadotrophin-releasing hormone (GnRH) is low in the hypothalamus during seasonal anoestrus, but by early spring, concentrations of GnRH are high. The timing of this response was characterized more precisely by determining concentrations of GnRH in hypothalamic tissue collected immediately before and at various times after the winter solstice (22 December 1986). Ovaries, pituitary gland, hypothalamus and a blood sample were collected from six groups of mares (6-12 mares per group) at death, 1 week before day of the winter solstice and 1, 2, 3 and 12 weeks afterwards. No significant changes in weight of the anterior pituitary gland or concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were observed in the anterior pituitary gland (P > 0.1). Mean diameter of the largest follicle, number of follicles > or = 20 mm in diameter and concentrations of LH and FSH in serum remained unchanged for weeks -1 to +3 (P < 0.05), then increased significantly by week 12 (P < 0.001). Content and concentration of GnRH in the median eminence was low at -1 week, increased gradually (P < 0.05) to a maximum by +1 week, then decreased gradually (P < 0.05) to low values at 12 weeks. Means (+/- SEM) for -1, +1 and +12 weeks were 33.5 +/- 5.5, 117.7 +/- 18.6 and 29.8 +/- 3.7 ng GnRH, respectively. Mean content of GnRH in the preoptic area of the hypothalamus showed a reciprocal pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

17.
Experiments were performed to study the responsiveness of the pituitary to gonadotropin-releasing hormone (GnRH) during the dynamic changes in gonadotropin secretion associated with the estrogen-induced luteinizing hormone (LH) surge in the ovariectomized (OVX) rhesus monkey. Silastic capsules filled with estradiol-17-beta were implanted subcutaneously in ovariectomized rhesus monkeys, resulting in an initial lowering of circulating LH and follicle-stimulating hormone (FSH) concentrations followed by an LH-FSH surge. GnRH was injected intravenously just before estrogen implantation, during the negative feedback response and during the rising, the peak, and the declining phases of the LH surge. The LH and FSH responses during the negative feedback phase were as large as those before estrogen treatment (control responses). During the rising phase of the LH surge, the acute response to GnRH injection did not differ significantly from the control response, but the responses 60 and 120 min after injection were somewhat increased. During the declining phase of the LH surge, the pituitary was not responsive to exogenous GnRH, although LH probably continued to be secreted at this time since the LH surge decreased more slowly than predicted by the normal rate of disappearance of LH in the monkey. We conclude that an increased duration of response to GnRH may be an important part of the mechanism by which estrogen induces the LH surge, but we do not see evidence of increased sensitivity of the pituitary to GnRH as an acute releasing factor at that time.  相似文献   

18.
We investigated the role of dopamine in the regulation of seasonal reproductive activity in mares. Nine seasonal anestrous mares, maintained under a natural photoperiod, were treated daily with a dopamine D2 antagonist, [-]-sulpiride (200 mg/mare, im), beginning February 5 (day of year = 36) until the first ovulation of the year or for a maximum of 58. Nine untreated anestrous mares were maintained under the same conditions. The ovaries were examined by ultrasonography twice a week, and blood was collected three times a week for progesterone, LH, FSH and prolactin determinations. Mean day of first ovulation was significantly advanced for [-]-sulpiride-treated mares than control mares (mean day of year +/- SEM = 77.3 +/- 7.9 and 110.0 +/- 6.8, respectively; P < 0.01). Eight mares ovulated during [-]-sulpiride treatment while one mare failed to ovulate. Ovulation occurred 91 d after the start of treatment or on Day 127. All mares continued to have normal estrous cycles after the first ovulation. First cycle length and luteal progesterone concentrations did not differ between [-]-sulpiride-treated and control mares. Plasma prolactin concentrations were significantly increased at 2 and 9 h after [-]-sulpiride administration (P < 0.05), and had returned to basal levels by 24 h. At the time of the LH surge associated with the first ovulation, mean LH and FSH secretion was significantly higher in [-]-sulpiride-treated mares than in control mares (P < 0.05). These results suggest that dopamine plays a role in the control of reproductive seasonality in mares and exerts a tonic inhibition on reproductive activity during the anovulatory season.  相似文献   

19.
To evaluate the effect of progesterone on the synthesis and secretion of gonadotropins, ovariectomized ewes either were treated with progesterone (n = 5) for 3 wk or served as controls (n = 5) during the anestrous season. After treatment for 3 wk, blood samples were collected from progesterone-treated and ovariectomized ewes. After collection of blood samples, hypothalamic and hypophyseal tissues were collected from all ewes. Half of each pituitary was used to determine the content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the number of receptors for gonadotropin-releasing hormone (GnRH). The amounts of mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were measured in the other half of each pituitary. Treatment with progesterone reduced mean serum concentrations of LH (p less than 0.001) but ot FSH (p greater than 0.05). Further, progesterone decreased (p less than 0.05) the total number of pulses of LH. We were unable to detect pulsatile release of FSH. Hypothalamic content of GnRH, number of receptors for GnRH, pituitary content of gonadotropins and mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were not affected (p greater than 0.05) by treatment with progesterone. Thus, after treatment with progesterone, serum concentrations of LH (but not FSH) are decreased. This effect, however, is not due to a decrease in the steady-state amount of mRNA for LH beta or alpha subunits.  相似文献   

20.
Granulosa-theca cell tumors (GTCTs) are able to secrete variable amounts of sex steroids and immunoreactive inhibin (ir-INH). Although the pituitary appears to be affected by the presence of a GTCT, pituitary responsiveness to exogenous GnRH has not been examined. The aims of the present study were to: (i) assess the plasma hormone concentrations of ir-INH, gonadotropins and sex steroids in eight mares with GTCT and (ii) assess the responsiveness of pituitary gonadotroph cells to exogenous GnRH stimulus both before and after tumor removal. In seven mares, the contralateral ovary was firm, small and inactive. Histopathological observations of the tumors confirmed the presumptive diagnosis of a GTCT. Four mares, judged to be in vernal transition period (n=2) and in the breeding season (n=2), were used as controls. A single intravenous injection of 40 microg of GnRH agonist was given to each mare and blood samples were collected every 15 min from 2 h before to 4 h after injection. In four GTCT mares, this procedure was repeated 20 (n=2) and 90 (n=2) days after tumors removal. All plasma samples were analyzed for concentrations of ir-INH, LH, FSH, estradiol-17beta (E2), testosterone (T) by RIA and progesterone (P) by EIA. Results showed that E2 levels were significantly higher (P<0.001) in control animals compared to E2 levels in GTCT mares before and after surgery. P and T concentrations were not statistically different between the groups. Baseline levels of ir-INH were greater (P<0.05) in GTCT mares before surgery than in control mares, and decreased to undetectable levels after neoplasia ablation. Baseline FSH did not differ between control and GTCT animals either before or after the ovaries were removed. LH baseline values appeared to be higher for affected mares, but the difference was not statistically significant. Maximum release (MR) and area under the gonadotrophin release curve (AUC) after the GnRH challenge for both the gonadotrophins were similar between the groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号